The structure of viscoplastic fluid flow during filling of a circular pipe / plane channel

Authors

  • Evgeniy Ivanovich Borzenko Tomsk State University
  • Gennadiy Rafailovich Shrager Tomsk State University

DOI:

https://doi.org/10.7242/1999-6691/2019.12.2.11

Keywords:

channel, pipe, viscoplastic fluid, free surface, filling, fountain flow, regime, unyielded regions

Abstract

The investigation of a viscoplastic fluid flow initiated in a circular pipe/plane channel during its filling in the gravity field at the flow rate specified at the inlet section is carried out. A mathematical formulation of the problem is developed using complete equations of motion, continuity equation, natural boundary conditions on the free surface, and no-slip boundary conditions on the solid wall. The rheological behavior of the medium is described by the Shvedov-Bingham law, which implies the existence of zones with quasi-solid motion (unyielded zones) in the regions of low strain rate. The numerical solution of the problem is based on the finite-difference approach with an application of the finite volume method and SIMPLE algorithm for calculating velocity and pressure fields at the internal nodes of a staggered grid. The method of invariants is used to satisfy the boundary conditions on the free surface. To provide a through computation of the flow with unyielded regions, a regularization of the rheological equation is implemented. The investigation of the free boundary behavior, flow structure, and flow characteristics as a function of the main parameters is carried out. It was found that in the course of time the initially flat free boundary assumes a stationary convex shape, which remains invariant moving through the pipe/channel at an average velocity. In the flow near and far away from the free boundary one can distinguish the fountain flow zones and the one-dimensional flow regions, respectively. The typical flow structures with different number and various locations of unyielded regions in the flow are shown. The topograms of the above mentioned flow structures are plotted as a function of the ratio of viscous and gravity forces and plasticity in the fluid flow. The stable and unstable behavior of the free boundary shape is shown to be related to the values of the constitutive parameters.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено при поддержке Российского научного фонда (грант № 18-19-00021).

References

Yankov V.I., Boyarchenko V.I., Pervadchuk V.P., Glot I.O., Shakirov N.V Pererabotka voloknoobrazuyushchikh polimerov. Osnovy reologii polimerov i techeniye polimerov v kanalakh [Recycling fiber-forming polymers. Basics of polymer rheology and flow of polymers in channels]. Moscow–Izhevsk, Institut komp’yuternykh issledovaniy, Regulyarnaya i khaoticheskaya dinamika, 2008. 264 p.

Coyle D.J., Blake J.W., Macosco C.W. The kinematics of fountain flow in mold-filling. AIChE J., 1987, vol. 33, pp. 1168‑1177. https://doi.org/10.1002/aic.690330711">DOI

Mitsoulis E. Fountain flow revisited: The effect of various fluid mechanics parameters. AIChE J., 2010, vol. 56, pp. 1147‑1162. https://doi.org/10.1002/aic.12038">DOI

Borzenko E.I., Frolov O.Yu., Shrager G.R. Fountain viscous fluid flow during filling a channel when taking dissipative warming into account. Fluid Dyn., 2014, vol. 49, pp. 37-45. https://doi.org/10.1134/S0015462814010062">DOI

Hassan H., Regnier N., Pujos C., Defaye G.Effect of viscous dissipation on the temperature of the polymer during injection molding filling. Polymer. Eng. Sci., 2008, vol. 48, pp. 1199-1206. https://doi.org/10.1002/pen.21077">DOI

Baranov A.V. Non-isothermal flow of rheological complex media taking into account of chemical conversions. MKMK  Journal on composite mechanics and design, 2010, vol. 16, no. 3, pp. 384-399.

Nguyen-Chung T., Mennig G. Non-isothermal transient flow and molecular orientation during injection mold filling. Rheol. Acta, 2001, vol. 40, pp. 67-73. https://doi.org/10.1007/s003970000121">DOI

El Otmani R., Zinet M., Boutaous M., Benhadid H. Numerical simulation and thermal analysis of the filling stage in injection molding process: Role of the mold-polymer interface. J. Appl. Polym. Sci., 2011, vol. 121, pp. 1579-1592. https://doi.org/10.1002/app.33699">DOI

 Wang W., Li X., Han X. Numerical simulation and experimental verification of the filling stage in injection molding. Polymer. Eng. Sci., 2012, vol. 52, pp. 42-51. https://doi.org/10.1002/pen.22043">DOI

Kamal M.R., Goyal S.K., Chu E. Simulation of injection mold filling of viscoelastic polymer with fountain flow. AIChE J., 1988, vol. 34, pp. 94-106. https://doi.org/10.1002/aic.690340111">DOI

Bulgakov V.K., Lipanov A.M., Chekonin K.A.Filling the region between vertical coaxial cylinders of an anomalously viscous fluid under nonisothermal conditions. J. Eng. Phys. Thermophys., 1989, vol. 57, pp. 1169-1175. https://doi.org/10.1007/BF00871133">DOI

Lipanov A.M., Al’yes M.Yu., Konstantinov Yu.N. Chislennoye modelirovaniye polzushchikh techeniy nen’yutonovskikh zhidkostey so svobodnoy poverkhnost’yu [Numerical simulation of creeping free surface non-Newtonian fluids]. Matem. modelirovanie – Mathematical Models and Computer Simulations, 1993, vol. 5, no. 7, pp. 3-9.

Borzenko E.I., Shrager G.R., Yakutenok V.A. Filling of channels with a non-Newtonian fluid in the gravity field. Fluid Dyn., 2009, vol. 44, pp. 830-835. https://doi.org/10.1134/S0015462809060052">DOI

Mavridis H., Hrymak A.N., Vlachopoulos J. Finite element simulation of fountain flow in injection molding. Polymer. Eng. Sci., 1986, vol. 26, pp. 449-454. https://doi.org/10.1002/pen.760260702">DOI

Gogos C.G., Huang Ch.-F., Schmidt L.R. The process of cavity filling including the fountain flow in injection molding. Polymer. Eng. Sci., 1986, vol. 26, pp. 1457-1466. https://doi.org/10.1002/pen.760262016">DOI

Mitsoulis E. Fountain flow of pseudoplastic and viscoplastic fluids. Journal of Non-Newtonian Fluid Mechanics, 2010, vol. 165, pp. 45-55. https://doi.org/10.1016/j.jnnfm.2009.09.001">DOI

Glushkov I.A., Banzula Yu.B. Modelirovaniye strukturno-reologicheskikh svoystv dispersnykh system [Modeling the structural and rheological properties of dispersed systems]. Moscow, Ugreshskaya tipografiya, 2009. 299 p.

Patankar S. Numerical heat transfer and fluid flow. New York, Taylor & Francis, 1980. 197 p.

Vasenin I.M., Sidonskiy O.B., Shrager G.R. Chislennoye resheniye zadachi o dvizhenii vyazkoy zhidkosti so svobodnoy poverkhnost’yu [Numerical solution of the problem of the motion of a viscous fluid with a free surface]. DAN SSSR Transactions of the USSR Academy of Sciences, 1974, vol. 217, no. 2, pp. 295-298.

Borzenko E.I., Shrager G.R. Effect of the type of boundary conditions on the three-phase contact line on the flow characteristics during filling of the channel. J. Appl. Mech. Tech. Phy., 2015, vol. 56, pp. 167-176. https://doi.org/10.1134/S0021894415020017">DOI

Bercovier M., Engelman M.A.Finite-element method for incompressible non-Newtonian flows. J. Comput. Phys., 1980, vol. 36, pp. 313-326. https://doi.org/10.1016/0021-9991(80)90163-1">DOI

Rose W. Fluid–fluid interfaces in steady motion. Nature, 1961, vol. 191, pp. 242-243. https://doi.org/10.1038/191242a0">DOI

Published

2019-06-30

Issue

Section

Articles

How to Cite

Borzenko, E. I., & Shrager, G. R. (2019). The structure of viscoplastic fluid flow during filling of a circular pipe / plane channel. Computational Continuum Mechanics, 12(2), 129-136. https://doi.org/10.7242/1999-6691/2019.12.2.11