Modelling the viscoelastic-plastic deformation of flexible reinforced plates with account of weak resistance to transverse shear

Authors

  • Andrey Petrovich Yankovskii Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

DOI:

https://doi.org/10.7242/1999-6691/2019.12.1.8

Keywords:

plates, cross-reinforcement, viscoelastic-plastic deformation, geometric nonlinearity, Reddy theory, Maxwell-Boltzmann body, dynamic loading, “cross” type scheme, numerical scheme stability

Abstract

A mathematical model of viscoelastic-plastic deformation of flexible plates cross-reinforced in planes parallel to the middle plane is developed on the basis of the algorithm of time steps. The deformations of the components of the composition of the plates are assumed to be small and they are decomposed into elastic and plastic components. The viscoelastic behavior of the composition materials is subject to the relations of the Maxwell-Boltzmann body. Inelastic deformation is defined by the equations of the theory of plastic flow with isotropic hardening. The normal stresses in the transverse direction are linearly approximated over the thickness of the plates. Therefore, linear deformations in the transverse direction and their velocities are excluded from the governing equations for the composition components. The weakened resistance of fibrous plates to transverse shear is taken into account in the framework of the non-classical Reddy bending theory. The geometric nonlinearity of the problem is considered in the Karman approximation. The formulated initial-boundary value problems are solved numerically using an explicit scheme of the “cross” type. To obtain a stable numerical scheme, an artificial technique is used: the stresses in the Maxwell - Boltzmann viscoelastic relations at the current discrete time are expressed in terms of the stress velocity by the trapezoid formula with a step back. The elastic-plastic and viscoelastic-plastic bending dynamic behavior is investigated for the relatively thick orthogonally reinforced fiberglass rectangular plates under the action of explosive loads. It is shown that a change in the structure of reinforcement leads to a change in the value of the residual deflection of the structure. It was found that the amplitude of oscillations of the reinforced plate in the vicinity of the initial time instant significantly exceeds the value of the residual deflection.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена в рамках Программы фундаментальных научных исследований государственных академий наук на 2017-2020 годы (проект 23.4.1 - Механика деформирования и разрушения материалов, сред при механических нагрузках, воздействии физических полей и химически активных сред).

References

Bannister M. Challenger for composites into the next millennium – a reinforcement perspective. Appl. Sci. Manuf., 2001, vol. 32, pp. 901-910. https://doi.org/10.1016/S1359-835X(01)00008-2">DOI

Mouritz A.P., Gellert E., Burchill P., Challis K. Review of advanced composite structures for naval ships and submarines. Struct., 2001, vol. 53, pp. 21-42. http://dx.doi.org/10.1016/S0263-8223(00)00175-6">DOI

Gibson R.F. Principles of composite material mechanics. 3rd Boca Raton, CRC Press, Taylor & Francis Group, 2012. 686 p.

Gill S.K., Gupta M., Satsangi P.S. Prediction of cutting forces in machining of unidirectional glass fiber reinforced plastic composites. Mech. Eng., 2013, vol. 8, pp. 187-200. https://doi.org/10.1007/s11465-013-0262-x">DOI

Solomonov Yu.S., Georgiyevskiy V.P., Nedbay A.Ya., Andryushin V.A. Prikladnyye zadachi mekhaniki kompozitnykh tsilindricheskikh obolochek [Applied problems of mechanics of composite cylindrical shells]. M.: Fizmatlit, 2014. 408 p.

Nemirovskiy Yu.V., Reznikov B.S. Prochnost’ elementov konstruktsiy iz kompozitnykh materialov [Strength of elements of designs from composites materials]. Novosibirsk, Nauka, 1986. 168 p.

Ambartsumyan A. Teoriya anizotropnykh plastin. Prochnost’, ustoychivost’ i kolebaniya [The theory of anisotropic plates. Strength, stability and fluctuations]. Moscow, Nauka, 1987. 360 p.

Vasil’yev V.V. Mekhanika konstruktsiy iz kompozitsionnykh materialov [Mechanics of composite structures]. Moscow, Mashinostroyeniye, 1988. 272 p.

Bogdanovich A.E. Nelineynyye zadachi dinamiki tsilindricheskikh kompozitnykh obolochek [Nonlinear problems of the dynamics of cylindrical composite shells]. Riga, Zinatne, 1987. 295 p.

Abrosimov N.A., Bazhenov V.G. Nelineynyye zadachi dinamiki kompozitnykh konstruktsiy [Nonlinear problems of dynamics composites designs]. Nizhniy Novgorod: Nizhniy Novgorod State University, 2002. 400 p.

Reddy J.N. Mechanics of laminated composite plates and shells. Theory and analysis / 2nd Boca Raton: CRC Press, 2004. 831 p.

Kulikov G.M. Thermoelasticity of flexible multilayer anisotropic shells. Solids, 1994, vol. 29, no. 2, pp. 27-35.

Andreyev A. Uprugost’ i termouprugost’ sloistykh kompozitnykh obolochek. Matematicheskaya model’ i nekotoryye aspekty chislennogo analiza [Elasticity and thermo-elasticity layered composite shells. Mathematical model and some aspects of the numerical analysis.]. Saarbrucken, Palmarium Academic Publishing, 2013. 93 p.

Kaledin V.O., Aul'chenko S.M., Mitkevich A.B., Reshetnikova E.V., Sedova E.A., Shpakova Yu.V. Modelirovaniye statiki i dinamiki obolochechnykh konstruktsiy iz kompozitsionnykh materialov [Simulation of statics and dynamics of shell structures made of composite materials]. Moscow, Fizmatlit, 2014. 196 p.

Yankovskii A.P. Applying the explicit time central difference method for numerical simulation of the dynamic behavior of elastoplastic flexible reinforced plates. Appl. Mech. Tech. Phys., 2017, vol. 58, pp. 1223-1241. https://doi.org/10.1134/S0021894417070112">DOI

Reissner E. The effect of transverse shear deformation on the bending of elastic plates. Appl. Mech., 1945, vol. 12, pp. A69-A77.

Mindlin R.D. Thickness-shear and flexural vibrations of crystal plates. Appl. Phys., 1951, vol. 22, pp. 316-323. https://doi.org/10.1063/1.1699948">DOI

Whitney J.M., Sun C.T. A higher order theory for extensional motion of laminated composites. Sound Vib., 1973, vol. 30, pp. 85-97. https://doi.org/10.1016/S0022-460X(73)80052-5">DOI

Pikul′ V.V. Mekhanika obolochek [Mechanics of shells]. Vladivostok, Dal′nauka, 2009. 535 p. Librescu L., Oh S.-Y., Hohe J. Linear and non-linear dynamic response of sandwich panels to blast loading. B Eng., 2004, vol. 35, pp. 673-683. https://doi.org/10.1016/j.compositesb.2003.07.003">DOI

Librescu L., Oh S.-Y., Hohe J. Linear and non-linear dynamic response of sandwich panels to blast loading. B Eng., 2004, vol. 35, pp. 673-683. https://doi.org/10.1016/j.compositesb.2003.07.003">DOI

Kazanci Z. Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses. J. Non Lin. Mech., 2011, vol. 46, pp. 807-817. https://doi.org/10.1016/j.ijnonlinmec.2011.03.011">DOI

Zubchaninov V.G. Mekhanika protsessov plasticheskikh sred [Mechanics of processes of plastic mediums]. Moscow, Fizmatlit, 2010. 352 p.

Pisarenko G.S., Yakovlev A.P., Matveyev V.V. Vibropogloshchayushchiye svoystva konstruktsionnykh materialov: Spravochnik [Vibration absorption properties of structural materials: a Handbook]. Kiyev, Naukova dumka, 1971. 375 p.

Paimushin V.N., Firsov V.A., Gyunal I., Egorov A.G. Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens. 1. Experımental basıs. Compos. Mater., 2014, vol. 50, pp. 127-136. https://doi.org/10.1007/s11029-014-9400-8">DOI

Flugge S. (ed.) Handbuch der Physik. Band VI: Elastizitat und Plastizitat [Handbook of Physics. Vol. 6: Elasticity and Plasticity]. Springer-Verlag, 1958. 642 p. https://doi.org/10.1007/978-3-662-43081-1">DOI

Kolarov D., Baltov A., Boncheva N. Mekhanika plasticheskikh sred [Mechanics of plastic mediums]. Moscow, Mir, 1979. 302 p.

Houlston R., DesRochers C.G. Nonlinear structural response of ship panels subjected to air blast loading. Struct., 1987, vol. 26, pp. 1-15. https://doi.org/10.1016/0045-7949(87)90232-X">DOI

Zeinkiewicz O.C., Taylor R.L. The finite element method. Vol. 1: The basis. Oxford, Butterworth-Heinemann, 2000. 707 p.

Sedov L.I. Vvedeniye v mekhaniku sploshnoy sredy [Introduction in mechanics of the continuous medium]. Moscow, Fizmatgiz, 1962. 284 p.

Ivanov G.V., Volchkov Yu.M., Bogul’skiy I.O., Anisimov S.A., Kurguzov V.D. Chislennoye resheniye dinamicheskikh zadach uprugoplasticheskogo deformirovaniya tverdykh tel [The numerical solution of dynamic problems elastic-plastic deformations of solids]. Novosibirsk, Siberian university, 2002. 352 p.

Kachanov L.M. Osnovy teorii plastichnosti [Bases of the theory of plasticity]. Moscow, Nauka, 1969. 420 p.

Yankovskii A.P. Determination of the thermoelastic characteristics of spatially reinforced fibrous media in the case of general anisotropy of their components. 1. Structural model. Compos. Mater., 2010, vol. 46, pp. 451-460. https://doi.org/10.1007/s11029-010-9162-x">DOI

Dekker K., Verwer J.G. Stability of Runge–Kutta methods for stiff nonlinear differential equation. Amsterdam-New York-Oxford: North-Holland, 1984. 307 p.

Khazhinskiy G.M. Modeli deformirovaniya i razrusheniya metallov [Model of deformation and fracture of metals]. Moscow, Nauchnyy mir, 2011. 231 p.

Karpinos M. (ed.) Kompozitsionnyye materialy. Spravochnik [Composite materials. Reference Book]. Kiyev, Naukova dumka, 1985. 592 p.

Lubin (ed.) Handbook of composites. New York: Van Nostrand Reinhold Company Inc., 1982. 786 p.

Published

2019-03-30

Issue

Section

Articles

How to Cite

Yankovskii, A. P. (2019). Modelling the viscoelastic-plastic deformation of flexible reinforced plates with account of weak resistance to transverse shear. Computational Continuum Mechanics, 12(1), 80-97. https://doi.org/10.7242/1999-6691/2019.12.1.8