Investigation of crystallographic textures in multi-level models for polycrystalline deformation using clustering techniques
DOI:
https://doi.org/10.7242/1999-6691/2019.12.1.7Keywords:
crystallographic texture, crystal elasto-visco-plastic model, clustering, algorithm, simple shear, one-axial compression, polycrystalline copperAbstract
The feasibility of applying clustering techniques to describe and investigate crystallographic textures by using numerical results simulated for crystallite (grain, subgrain) lattice orientations with the help of multi-level crystal elasto-visco-plasticity models is considered. The texture clustering problem is stated as partitioning a given sample of crystal lattice orientations into disjoint subsets of elements which are close to each other in a certain sense. To formalize this concept of closeness, a special pseudo-metric distance taking into account rotational lattice symmetry is introduced in the space of orientations. This distance being induced by the natural Riemann metrics determines the minimal rotation angle between the symmetrically equivalent orientations of the arguments. A heuristic algorithm based on alternating well-known clustering methods is formulated to solve the stated problem. The proposed approach allows identifying, for a polycrystalline aggregate, the regions in the space of orientations with the higher density of elements, as well as evaluating some of their effective characteristics for such regions. The developed procedure includes the following stages: dividing a sample of orientations into layers; clustering by reachability (in the sense of the transitive closure of the closeness criterion being adopted for orientations); the so-called medoid-based clustering; splitting weakly localized clusters. The application of the presented clustering technique is demonstrated by considering simple shear and axial compression textures obtained through modeling the inelastic deformation of a representative volume element for polycrystalline copper. In the examined cases, local one-parameter approximations of a given form are found for the density of distribution of the angles between orientations and medoids (conditional centers) of the related clusters. Also, the statistical significance of these approximations is tested using equiprobable intervals.
Downloads
References
Busso E.P. Multiscale approaches: From the nanomechanics to the micromechanics. Computational and experimental mechanics of advanced materials, ed. V.V. Silberschmidt. Springer, Vienna, 2010. Pp. 141-165. http://doi.org/10.1007/978-3-211-99685-0_4">DOI
Luscher D.J., McDowell D.L. An extended multiscale principle of virtual velocities approach for evolving microstructure. Procedia Eng., 2009, vol. 1, pp. 117-121. http://doi.org/10.1016/j.proeng.2009.06.028">DOI
Luscher D.J., McDowell D.L., Bronkhorst C.A. A second gradient theoretical framework for hierarchical multiscale modeling of materials. J. Plast., 2010, vol. 26, pp. 1248-1275. http://dx.doi.org/10.1016/j.ijplas.2010.05.006">DOI
Trusov P.V., Shveykin A.I. Multilevel crystal plasticity models of single- and polycrystals. Statistical Models. Mesomech., 2013, vol. 16, pp. 23-33. https://doi.org/10.1134/S1029959913010037">DOI
Trusov P.V., Shveykin A.I. Multilevel crystal plasticity models of single- and polycrystals. Direct models. Mesomech., 2013, vol. 16, pp. 99-124. http://doi.org/10.1134/S1029959913020021">DOI
Trusov P.V., Shveykin A.I., Kondratev N.S. Multilevel metal models: formulation for large displacements gradients. Nanomechanics Science and Technology: An International Journal, 2017, vol. 8, pp. 133-166. http://doi.org/10.1615/NanoSciTechnolIntJ.v8.i2.40">DOI
Bunge H.-J. Texture analysis in materials science. Mathematical Methods. Oxford, Butterworth-Heinemann, 1969. 614 p. https://doi.org/10.1016/C2013-0-11769-2">DOI
Theoretical methods of texture analysis, H.J. Bunge. Oberursel, DGM-Informationsgesellschaft-Verlag, 1987. 450 p. DOI у этого сборника статей нет
Holmes P., Lumley J.L., Berkooz G., Rowley C.W. Turbulence, coherent structures, dynamical systems and symmetry. 2nd Cambridge University Press, 2012. 402 p. http://doi.org/10.1017/CBO9780511919701">DOI
Sirovich L. Turbulence and the dynamics of coherent structures. I. Coherent structures. Appl. Math., 1987, vol. 45, pp. 561-571. http://doi.org/10.1090/qam/910462">DOI
Raabe D., Roters F. Using texture components in crystal plasticity finite element simulations. J. Plast., 2004, vol. 20, pp. 339-361. http://doi.org/10.1016/S0749-6419(03)00092-5">DOI
Lücke K., Pospiech J., Virnich K.H., Jura J. On the problem of the reproduction of the true orientation distribution from pole figures. Acta Metall., 1981, vol. 29, pp. 167-185. http://doi.org/10.1016/0001-6160(81)90097-3">DOI
Lücke K., Jura J., Pospiech J., Hirsch J.R. On the presentation of orientation distribution functions by model functions. Zeitschrift für Metallkunde, 1986, vol. 77, pp. 312-321. URL: https://www.researchgate.net/publication/292009181_ON_THE_PRESENTATION_OF_ORIENTATION_DISTRIBUTION_FUNCTIONS_BY_MODEL_FUNCTIONS">https://www.researchgate.net/publication/292009181_ON_THE_PRESENTATION_OF_ORIENTATION_DISTRIBUTION_FUNCTIONS_BY_MODEL_FUNCTIONS (accessed 25 March 2019)
Matthies S. Form effects in the description of the orientation distribution function (ODF) of texturized materials by model components. Status Solidi B, 1982, vol. 112, pp. 705-716. http://doi.org/10.1002/pssb.2221120242">DOI
Helming K., Eschner Th. A new approach to texture analysis of multiphase materials using a texture component model. Res. Technol., 1990, vol. 25, no. 8, pp. K203-K208. http://doi.org/10.1002/crat.2170250828">DOI
Helming K., Schwarzer R.A., Rauschenbach B., Geier , Leiss B., Wenk H., Ullemeier K., Heinitz J. Texture estimates by means of components. Zeitschrift für Metallkunde, 1994, vol. 85, pp. 545-553.
Eschner Th., Fundenberger J.-J. Application of anisotropic texture components. Textures and Microstructures, 1997, vol. 28, no. 3-4, pp. 181-195. http://doi.org/10.1155/TSM.28.181">DOI
Ivanova T.M., Savyolova T.I., Sypchenko M.V. The modified component method for calculation of orientation distribution function from pole figures. Inverse Problems in Science and Engineering, 2010, vol. 18, no. 1, pp. 163-171. http://doi.org/10.1080/17415970903234943">DOI
Ruer D., Baro R. Vectorial method of texture analysis of cubic lattice polycrystalline material. Appl. Cryst., 1977, vol. 10, pp. 458-464. http://doi.org/10.1107/S002188987701396X">DOI
Matthies S. The ODF-spectrum a new and comprehensive characterization of the degree of anisotropy of orientation distributions. Materials Science Forum, 2005, vol. 495-497, pp. 331-338. http://doi.org/10.4028/www.scientific.net/MSF.495-497.331">DOI
Kumar A., Dawson P.R. The simulation of texture evolution with finite elements over orientation space I. Development. Meth. Appl. Mech. Eng., 1996, vol. 130, pp. 227-246. http://doi.org/10.1016/0045-7825(95)00904-3">DOI
Adams B.L., Henrie A., Henrie B., Lyon M., Kalidindi S.R., Garmestani H. Microstructure-sensitive design of a compliant beam. Mech. Phys. Solids, 2001, vol. 49, pp. 1639-1663. http://doi.org/10.1016/S0022-5096(01)00016-3">DOI
Kalidindi S.R., Houskamp J.R., Lyons M., Adams B.L. Microstructure sensitive design of an orthotropic plate subjected to tensile load. J. Plast., 2004, vol. 20, pp. 1561-1575. http://doi.org/10.1016/j.ijplas.2003.11.007">DOI
Kalidindi S.R., Houskamp J., Proust G., Duvvuru H. Microstructure Sensitive design with first order homogenization theories and finite element codes. Materials Science Forum, 2005, vol. 495-497, pp. 23-30. http://doi.org/10.4028/www.scientific.net/MSF.495-497.23">DOI
Brahme A., Winning M., Raabe D. Prediction of cold rolling texture of steels using an Artificial Neural Network. Mater. Sci., 2009, vol. 46, pp. 800-804. http://doi.org/10.1016/j.commatsci.2009.04.014">DOI
Sundararaghavan V., Zabaras N. On the synergy between texture classification and deformation process sequence selection for the control of texture-dependent properties. Acta Mater., 2005, vol. 53, pp. 1015-1027. http://doi.org/10.1016/j.actamat.2004.11.001">DOI
Sundararaghavan V., Zabaras N. A statistical learning approach for the design of polycrystalline materials. Anal. Data Min., 2009, vol. 1, pp. 306-321. http://doi.org/10.1002/sam.10017">DOI
Acharjee S., Zabaras N. A proper orthogonal decomposition approach to microstructure model reduction in Rodrigues space with applications to optimal control of microstructure-sensitive properties. Acta Mater., 2003, vol. 51, pp. 5627-5646. http://doi.org/10.1016/S1359-6454(03)00427-0">DOI
Ganapathysubramanian S., Zabaras N. Design across length scales: a reduced-order model of polycrystal plasticity for the control of microstructure-sensitive material properties. Meth. Appl. Mech. Eng., 2004, vol. 193, pp. 5017-5034. http://doi.org/10.1016/j.cma.2004.04.004">DOI
Hastie T., Tibshirani R., Friedman J. The elements of statistical learning: Data mining, inference, and prediction. New York, Springer-Verlag, 2009. 767 p. http://doi.org/10.1007/978-0-387-84858-7">DOI
Ostapovich K.V., Trusov P.V. The 12th Int. Conf. on Mechanics, resource and diagnostics of materials and structures, 21‑25 May 2018, Ekaterinburg, Russian Federation. 271. URL: http://www.imach.uran.ru/conf/conf2018/Sbornik2018.pdf">http://www.imach.uran.ru/conf/conf2018/Sbornik2018.pdf (accessed 25 March 2019)
Mokrova S.M., Petrov R.P., Milich V.N. Determination of the texture of polycrystalline materials using an algorithm of object-vector representation of reflection planes and visualization of the results in Rodrigues space. Udmurtsk. Univ. Mat. Mekh. Komp. nauki, 2016, vol. 26, no. 3, pp. 336-344. http://doi.org/10.20537/vm160304">DOI
Trusov P.V., Shveykin A.I., Yanz A.Y. Motion decomposition, frame-independent derivatives and constitutive relations at large displacement gradients from the viewpoint of multilevel modeling. Mesomech., 2017, vol. 20, pp. 357-376. http://doi.org/10.1134/S1029959917040014">DOI
Shveikin A.I., Trusov P.V. Correlation between geometrically nonlinear elasto-visco-plastic constitutive relations formulated in terms of the actual and unloaded configurations for crystallites. Mesomech., 2018, vol. 21, pp. 193-202. http://doi.org/10.1134/S1029959918030025">DOI
Shveykin A.I., Trusov P.V. Multilevel models of polycrystalline metals: Comparison of relations describing the rotations of crystallite lattice. Nanomechanics Science and Technology: An International Journal, 2019, vol. 10, pp. 1-20. http://doi.org/10.1615/NanoSciTechnolIntJ.2018028673">DOI
Kaufman L., Rousseeuw P. Finding groups in data: An introduction to cluster analysis. Hoboken, New Jersey, John Wiley & Sons, 1990. 356 p. http://doi.org/10.1002/9780470316801">DOI
Massart D.L., Plastria F., Kaufman L. Non-hierarchical clustering with MASLOC. Pattern Recogn., 1983, vol. 16, pp. 507‑516. http://doi.org/10.1016/0031-3203(83)90055-9">DOI
Trusov P.V., Ostapovich K.V. On elastic symmetry identification for polycrystalline materials. Symmetry, 2017, vol. 9, no. 10, 240. http://doi.org/10.3390/sym9100240">DOI