Modeling of grain-boundary diffusion under nonstationary heating conditions
DOI:
https://doi.org/10.7242/1999-6691/2019.12.1.6Keywords:
diffusion, grain-boundary diffusion, non-isothermal conditions, numerical solution, concentration distributionAbstract
Grain boundary diffusion appreciably affects the physicomechanical and chemical properties of constructional materials. Experimental studies show that transfer processes run more intensively in materials with a larger area of internal boundaries. For these materials, the temperature required for diffusion activation is reduced. Much attention is paid to grain-boundary diffusion in such areas as materials science, physics and chemistry of metals, and metal science. However, there are practically no published works where the diffusion along the grain boundaries and phases under non-isothermal conditions has been studied. This work presents a two-dimensional model of alloying element redistribution from the amorphous coating into the substrate. The substrate is represented by alternating grains with a clear selection of the triple junction. The areas adjacent to the grain boundaries are clearly selected in the model and have a finite thickness. Different ratios between the grain sizes and the boundaries widths relate to diffusion in micro- and nanocrystalline materials. The redistribution of the alloying element is initiated by one or several thermal pulses associated with the action of the electron beam. It is taken into account when the heat part of the problem has been formulated that the typical scales of the heat and diffusion processes are essentially different. The diffusion problem takes into account the temperature dependence of the diffusion coefficients in the volume of grains and along the boundaries between them. The problem was solved numerically. Varying the parameters of the model, it was found by that the ratio of activation energies in the phases has the greatest influence on the diffusant distribution. Pulsed treatment compared to treatment with constant heating results in slower leads to a slow down of diffusion along the grain boundaries. The simulation results are qualitatively consistent with the data found in the literature.
Downloads
References
Kaur I., Gust W. Fundamentals of grain and interphase boundary diffusion. Stuttgart: Ziegler Press, 1989. 422 p.
Bokshteyn B.S., Yaroslavtsev A.B. Diffuziya atomov i ionov v tverdykh telakh [Diffusion of atoms and ions in solids]. Moscow, MISIS, 2005. 362 p.
Kolobov Yu.R., Lipnitsky A.G., Ivanov M.B., Golosov E.V. The role of diffusion-controlled processe in structure and properties formation of metallic nanomaterials. Kompozity i nanostruktury – Composites and nanostructures, 2009, no. 2, pp. 5-24.
Aoto T., Sato K., Mian Md.S., Okimura K. Impact of (111)-oriented TiN conductive layers for the growth of vanadium dioxide films and the effect of grain boundary diffusions. Alloy. Compd., 2018, vol. 748, pp. 87-92. https://doi.org/10.1016/j.jallcom.2018.03.080">DOI
Aleshin A.N. Svyaz’ mezhdu parametrami zernogranichnoy diffuzii i strukturoy granits zeren v metallakh s granetsentrirovannoy kubicheskoy reshetkoy [The relationship between the parameters of grain-boundary diffusion and the structure of grain boundaries in metals with a face-centered cubic lattice]. Abstract Dr. Sci. in Physics and Mathematics, National University of Science and Technology MISIS, Moscow, 2011. 47 p.
Desissa T.D., Haugsrud R., Wiik K., Norby T. Inter-diffusion across a direct p-n heterojunction of Li-doped NiO and Al-doped ZnO. Solid State Ionics, 2018, vol. 320, 215-220. https://doi.org/10.1016/j.ssi.2018.03.011">DOI
Weng S., Qiao L., Wang P. Thermal stability of Pt-Ti bilayer films annealing in vacuum and ambient atmosphere. Surf. Sci., 2018, vol. 444, pp. 721-728. https://doi.org/10.1016/j.apsusc.2018.03.095">DOI
Wang Y., Luo Y., Wang Z., Wu G., Xie J., Yan W., Yu D. Coercivity enhancement in Nd-Fe-B magnetic powders by Nd-Cu-Al grain boundary diffusion. Magn. Magn. Mater., 2018, vol. 458, pp. 85-89. https://doi.org/10.1016/j.jmmm.2018.02.082">DOI
Nazarov A.A. Grain-boundary diffusion in nanocrystals with a time-dependent diffusion coefficient. Solid State, 2003, vol. 45, no. 6, pp. 1166-1169. http://dx.doi.org/10.1134/1.1583809">DOI
Popov V.V., Sergeev A.V. Grain-boundary diffusion of cobalt in submicrocrystalline molybdenum obtained by high-pressure torsion. Met. Metallogr., 2017, vol. 118, no. 11, pp. 1091-1096. http://dx.doi.org/10.1134/S0031918X17110126">DOI
Vasil’yev A.D. Diffuziya po dvizhushchimsya defektam reshetki v metallakh i splavakh [Diffusion of moving lattice defects in metals and alloys]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: fiziko-matematicheskie nauki – Bulletin of Samara State Technical University. Series: Physical and mathematical sciences, 1996, no. 4, pp. 131-138. https://doi.org/10.14498/vsgtu245">DOI
Smirnov E.A., Spiridonov A.K., Shmakov A.A. Radiation-stimulated grain-boundary diffusion in poly- and nanocrystalline materials. FizKhOM – Physics and chemistry of material processing, 2010, no. 3, pp. 7-14.
Rakitin R.Yu., Poletayev G.M., Aksenov M.S., Starostenkov M.D. Issledovaniye mekhanizmov diffuzii po granitsam zeren naklona v GTSK metallakh [Investigation of the mechanisms of diffusion along the grain boundaries of the slope in fcc metals]. Fundamental’’nye problemy sovremennogo materialovedeniya – Fundamental problems of modern material science, 2005, vol. 2, no. 2, pp. 124-129.
Chuvil’deev V.N., Blagoveshchenskiy Yu.V., Nokhrin A.V., Sakharov N.V., Boldin M.S., Isaeva N.V., Shotin S.V., Lopatin Yu.G., Smirnova E.S., Popov A.A., Belkin O.A., Semenycheva A.V. Sparking plasma sintering of tungsten carbide nanopowders. Nanotechnologies in Russia, 2015, vol. 10, no. 5-6, pp. 434-448. http://dx.doi.org/10.1134/S1995078015030040">DOI
Antsiferova I.V. The dependence of the densification process during sintering with the use of nanosized metal powders (scientific review). Vestnik PNIPU. Mashinostroyeniye, materialovedeniye – Bulletin of the Perm National Research Polytechnical University. Mechanical engineering, material science, 2015, vol. 17, no. 2, pp. 13-20.
Parfenova E.S., Knyazeva A.G. The initial stage of transient layer formation between film and substrate during heating by a high-current electron beam. Tom. gos. un-ta. Matematika i mekhanika – Bulletin of Tomsk State University. Mathematics and mechanics, 2018, no. 54, pp. 103-117. http://dx.doi.org/10.17223/19988621/54/9">DOI
Olyaeefar B., Ahmadi-Kandjani S., Asgari A. Classical modelling of grain size and boundary effects in polycrystalline perovskite solar cells. Energ. Mat. Sol. C., 2018, vol. 180, pp. 76-82. https://doi.org/10.1016/j.solmat.2018.02.026">DOI
Colombara D., Werner F., Schwarz T., Infante I.C., Fleming Y., Valle N., Spindler C., Vacchieri E., Rey G., Guennou M., Bouttemy M., Manjón A.G., Alonso I.P., Melchiorre M., El Adib B., Gault B., Raabe D., Dale P.J., Siebentritt S. Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers. Commun., 2018, vol. 9, 826. http://dx.doi.org/10.1038/s41467-018-03115-0">DOI
Olsén J., Shen Z., Liu L., Koptyug A., Rännar L.-E. Micro- and macro-structural heterogeneities in 316L stainless steel prepared by electron-beam melting. Charact., 2018, vol. 141, pp. 1-7. https://doi.org/10.1016/j.matchar.2018.04.026">DOI
Fisher J.C. Calculation of diffusion penetration curves for surface and grain boundary diffusion. Appl. Phys., 1951, vol. 22, pp. 74-77. https://doi.org/10.1063/1.1699825">DOI
Dolgopolov N.A., Rodin A.O., Simanov A.V., Gontar' I.G. Diffusion of copper along the grain boundaries in aluminum. J. Non-ferrous Metals, 2009, vol. 50, no. 2, pp. 133-137. https://doi.org/10.3103/S1067821209020114">DOI
Terent'ev Y.A., Bokstein B.S., Pomadchik A.L., Popova D.E., Rodin A.O. Grain-boundary diffusion of germanium in copper and Cu-Ge and Cu-Fe alloys. J. Non-ferrous Metals, 2012, vol. 53, no. 5, pp. 380-385. https://doi.org/10.3103/S1067821212050124">DOI
Dolgopolov N.A. Zernogranichnaya diffuziya medi v alyuminii i splavakh alyuminiy-med’ i alyuminiy-tseriy [Grain boundary diffusion of copper in aluminum and aluminum-copper and aluminum-cerium alloys]. Abstract PhD, National University of Science and Technology MISIS, Moscow, 2015. 22 p.
Belova I.K., Murch G.E. Relations between tracer and chemical diffusion coefficients in interstitial and substitutional alloys. Materialovedenie – Materials science, 2008, no. 9, pp. 39-46.
Belova I.V., Fiedler T., Kulkarni N., Murch G.E. The Harrison diffusion kinetics regimes in solute grain boundary diffusion. Mag., 2012, vol. 92, pp. 1748-1763. https://doi.org/10.1080/14786435.2012.657710">DOI
Kakurin Y.B., Kakurina N.A., Zakharov A.G. Methods of determining the grain boundary diffusion coefficient impurities in metals on the basis of numerical solutions for the Fisher model. IVD – Engineering journal of Don [Electronic scientific journal], 2013, no. 3(26). URL: http://www.ivdon.ru/en/magazine/archive/n3y2013/1811">http://www.ivdon.ru/en/magazine/archive/n3y2013/1811 (accessed 20 March 2019).
Saha S., Motalab M. Nature of creep deformation in nanocrystalline Tungsten. Mater. Sci., 2018, vol. 149, pp. 360-372. https://doi.org/10.1016/j.commatsci.2018.03.040">DOI
Lipnitskii A.G., Nelasov I.V., Kolobov Yu.R. Molecular dynamics study of grain boundary self-diffusion in hcp and bcc nanocrystalline titanium. mesomech. – Physical mesomechanics, 2013, vol. 16, no. 1, pp. 67-73.
Belova I.V., Murch G.E. Phenomenological Aspects of Grain Boundary Diffusion. Defect and Diffusion Forum, 2006, vol. 258-260, pp. 483-490. https://doi.org/10.4028/www.scientific.net/DDF.258-260.483">DOI
Scheiber D., Romaner L., Fischer F.D., Svoboda J. Kinetics of grain boundary segregation in multicomponent systems – The example of a Mo-C-B-O system. Scripta Mater., 2018, vol. 150, pp. 110-114. https://doi.org/10.1016/j.scriptamat.2018.03.011">DOI
Du L., Yang S., Zhu X., Jiang J., Hui Q., Du H. Pore deformation and grain boundary migration during sintering in porous materials: a phase-field approach. Mater. Sci., 2018, vol. 53, pp. 9567-9577. https://doi.org/10.1007/s10853-018-2267-7">DOI
Mishin Y.M. 50 Years of grain boundary diffusion: What do we know about it today? Defect and Diffusion Forum, 2001, vol. 194-199, pp. 1113-1126. https://doi.org/10.4028/www.scientific.net/DDF.194-199.1113">DOI
Divinski S.V. Diffusion and segregation of impurities on grain boundaries in copper of high purity. Part I. Materialovedenie – Materials science, 2008, no. 8, pp. 42-49.
Perevezentsev V.N., Pupynin A.S. Equations of diffusion in nonequilibrium grain boundaries. Met. Metallogr., 2008, vol. 105, pp. 322-326. https://doi.org/10.1134/S0031918X08040029">DOI
Krasil'nikov V.V., Savotchenko S.E. Grain boundary diffusion patterns under nonequilibrium and migration of grain boundaries in nanoctructure materials. Russ. Acad. Sci. Phys., 2009, vol. 73, pp. 1277-1283. https://doi.org/10.3103/S1062873809090214">DOI
Aleshin A.N. Diffusion in an ensemble of intersecting grain boundaries forming a triple junction. Metall., 2009, vol. 2009, pp. 394-399. https://doi.org/10.1134/S003602950905005X">DOI
Herzig C., Divinski S.V. Grain boundary diffusion in metals: Recent developments. Trans., 2003, vol. 44, no. 1, pp. 14-27. https://doi.org/10.2320/matertrans.44.14">DOI
Popov V.V. Model of grain-boundary diffusion with allowance for near-boundary layers of equilibrium composition. Met. Metallogr., 2006, vol. 102, pp. 453-461. https://doi.org/10.1134/S0031918X06110019">DOI
Klinger L., Rabkin E. Beyond the Fisher model of grain boundary diffusion: Effect of structural inhomogeneity in the bulk. Acta Mater., 1999, vol. 47, pp. 725-734. https://doi.org/10.1016/S1359-6454(98)00420-0">DOI
Perevezentsev V.N. Self-diffusion at grain boundaries with a disordered atomic structure. Phys., 2001, vol. 46, pp.1481-1483. https://doi.org/10.1134/1.1418520">DOI
Knyazeva A.G. Thermodynamics with additional parameters for polycrystals. Nanomechanics Science and Technology: An International Journal, 2016, vol. 7, pp. 1-25. https://doi.org/10.1615/NanomechanicsSciTechnolIntJ.v7.i1.10">DOI
Mikolaychuk M.A., Knyazeva A.G. Model’ diffuzii primesi v strukturno-neodnorodnoy deformiruyemoy srede [Model of impurity diffusion in a structurally inhomogeneous deformation medium]. Izvestiya VUZov. Fizika – Russian Physics Journal, 2012, vol. 55, no. 5-2, pp. 74-79.
Knyazeva А.G. The theory of reactive diffusion for the description of oxide phase growth in a coating. AIP Conf. Proc., 2015, vol. 1683, 020084. https://doi.org/10.1063/1.4932774">DOI
Bokshteyn B.S., Magidson I.A., Svetlov I.L. O diffuzii v ob”yeme i po granitsam zeren [On diffusion in the volume and grain boundaries]. FMM – Metal physics and metal science, 1958, vol. 6, no. 6, pp. 1040-1052.
Belova I.V., Murch G.E. Analysis of kinetics regimes in grain boundary self-diffusion. Mag., 2009, vol. 89, pp. 665-675. http://dx.doi.org/10.1080/14786430802555714">DOI
Jothi S., Croft T.N., Brown S.G.R., de Souza Neto E.A. Finite element microstructural homogenization techniques and intergranular, intragranular microstructural effects on effective diffusion coefficient of heterogeneous polycrystalline composite media. Struct., 2014, vol. 108, pp. 555-564. http://dx.doi.org/10.1016/j.compstruct.2013.09.026">DOI
Zhao J., Wang G.-X., Ye C., Dong Y. A numerical model coupling diffusion and grain growth in nanocrystalline materials. Mater. Sci., 2017, vol. 136, pp. 243-252. https://doi.org/10.1016/j.commatsci.2017.05.010">DOI
Diffusion in Solid Metals and Alloys, ed. H. Mehrer. Berlin/Heidelberg, Springer, 1990. 747 p. https://doi.org/10.1007/b37801">DOI
Stepanova E.N., Grabovetskaya G.P., Teresov A.D., Mishin I.P. Structure evolution and distributions of grain-boundary misorientainons in submicrocrystalline molybdenum irradiated with a pulsed electron beam. Phys. J., 2018, vol. 61, pp. 1-6. https://doi.org/10.1007/s11182-018-1357-y">DOI