Non-isothermal mechanodiffusion model of the initial stage of penetration of particle flow in a target surface

Authors

  • Elena Sergeyevna Parfenova Institute of Strength Physics and Materials Science SB RAS; National Research Tomsk Polytechnic University
  • Anna Georgiyevna Knyazeva Institute of Strength Physics and Materials Science SB RAS; National Research Tomsk Polytechnic University

DOI:

https://doi.org/10.7242/1999-6691/2019.12.1.4

Keywords:

surface treatment, coupled model, particle flow, wave propagation, nonlinear effects, elastic stress, diffusion, heat conduction, relaxation of heat flux, relaxation of mass flux

Abstract

The paper presents a coupled mathematical model of the initial stage of particle penetration in the metal surface in non-isothermal approximation. It is assumed that, at the moment of collision with a target, the particles have enough energy to generate mechanical disturbances, which affect the redistribution of the implanted material. The simplified one-dimensional model includes the heat conduction equation, the equation of implanted component balance and the equation of motion. The governing relations correspond to the theory of generalized thermoelastic diffusion. The model takes into account the finiteness of relaxation times of heat and mass fluxes and the interaction of waves of different physical nature - impurity concentration, stresses (strain) and temperature. The non-dimensioning of the equation system and the problem solving method are described in detail. The problem was solved numerically using the double sweep method. The paper presents examples of coupled problem solving for the system of materials - Mo(Ni). The processes of penetration and redistribution of the impurity on the target surface are considered at time moments smaller/longer than the relative relaxation times of heat and mass fluxes. It is shown that the interaction of waves of different physical nature leads to temperature and concentration distributions, which do not comply with the classical Fourier and Fick laws. The obtained results demonstrated distortions in deformation and temperature waves which are indicative of the interaction between the processes under consideration.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена в рамках Программы фундаментальных научных исследований государственных академий наук на 2013-2020 годы (направление III.23).

References

Belyy A.V., Makushok E.M., Pobol’ I.L. Poverkhnostnaya uprochnyayushchaya obrabotka s primeneniyem kontsentrirovannykh potokov energii [Surface hardening treatment with concentrated energy flows]. Minsk, Nauka i tekhnika, 1990. 78 р.

Komarov F.F., Novikov A.P. Ionno-luchevoye peremeshivaniye pri obluchenii metallov [Ion-beam mixing with metal irradiation]. Itogi nauki i tekhniki. Seriya: Puchki zaryazhennykh chastits i tverdoye telo. Raspyleniye [Results of science and technology. Series: Charged particle beams and solid. Spraying]. Moscow, VINITI, 1993, vol. 7, pp. 54-81.

Komarov F.F., Novikov A.P., Burenkov A.F. Ionnaya implantatsiya [Ion implantation]. Minsk, Universitehckae, 1994. 303 p.

Panin A.V., Kazachenok M.S., Borodovitsina O.M., Perevalova O.B., StepanovаM., Ivanov Yu.F. Modification of the structure of surface layers of commercial titanium in the process of treatment by low-energy high-current electron beams. Phys. Metals Metallogr., 2016, vol. 117, pp. 550-561. https://doi.org/10.1134/S0031918X16060089">DOI

Hao S., Zhao L., Zhang Y., Wang H. Improving corrosion and wear resistance of FV520B steel by high current pulsed electron beam surface treatment. Instrum. Meth. Phys. Res. B, 2015, vol. 356-357, pp. 12-16. https://doi.org/10.1016/j.nimb.2015.04.046">DOI

Leyvi A.Ya., Talala K.A., Krasnikov V.S., Yalovets A.P. Modification of the constructional materials with the intensive charged particle beams and plasma flows. Vestnik YuUrGU. Seriya «Mashinostroyeniye» – Bulletin of South Ural State University. Series “Mechanical Engineering Industry”, 2016, vol. 16, no. 1, pp. 28-55.

Zagulyaev D., Konovalov S., Gromov V., Glezer A., Ivanov Yu., Sundeev R. Structure and properties changes of Al-Si alloy treated by pulsed electron beam. Lett., 2018, vol. 229, pp. 377-380. https://doi.org/10.1016/j.matlet.2018.07.064">DOI

Panin A.V., Kazachenok M.S., Perevalova O.B., Sinyakova E.A., Krukovsky K.V., Martynov S.A. Mutiscale deformation of commercial titanium and Ti-6Al-4V alloy subjected to electron beam surface treatment. Mezomeh., 2018, vol. 21, pp. 441‑451. https://doi.org/10.1134/S1029959918050089">DOI

Boyko V.I., Skvortsov V.A., Fortov V.E., Shamanin I.V. Vzaimodeystviye impul’snykh puchkov zaryazhennykh chastits s veshchestvom [The interaction of pulsed beams of charged particles with matter]. Moscow, Fizmatlit, 2003. 288 p.

Boyko V.I., Daneykin Yu.V., Khadkevich А.V., Yushitsin К.V. Influence of generation mechanisms on pulse profile of mechanical stress in metal target under the action of power ion beams. Bulletin of the Tomsk Polytechnic University, 2007, vol. 310, no. 2, pp. 82-88.

Chason E., Karlson M., Colin J.J., Magnfalt D., Sarakinos K., Abadias G. A kinetic model for stress generation in thin films grown from energetic vapor fluxes. Appl. Phys., 2016, vol. 119, 145307. https://doi.org/10.1063/1.4946039">DOI

Amirkhanov I.V., Didyk A. Yu., Muzafarov D.Z., Puzynin I.V., Puzynina T.P., Sarker N.R., Sarhadov I., Sharipov Z.A. Model description of thermoelastic tensions in materials exposed to high energy heavy ions. Vestnik RUDN. Seriya Matematika. Informatika. Fizika – RUDN Journal of Mathematics, Information Sciences and Physics, 2010, no. 3(2), pp. 68-71.

Remnev G.E., Uglov V.V., Shymanski V.I., Pavlov S.K., Kuleshovb A.K. Formation of nanoscale carbon structures in the surface layer of metals under the impact of high intensity ion beam. Surf. Sci., 2014, vol. 310, pp. 204-209. http://dx.doi.org/10.1016/j.apsusc.2014.04.068">DOI

Indeytsev D.A., Mochalova Yu.A. Impurity diffusion in material under vibration loads. Chebyshevskii Sbornik, 2017, vol.18, no. 3, pp. 292-305. URL: https://www.chebsbornik.ru/jour/article/view/360/325">https://www.chebsbornik.ru/jour/article/view/360/325

Indeitsev D.A., Meshcheryakov Yu.I., Kuchmin A.Yu., Vavilov D.S. A Multiscale model of propagation of steady elasto-plastic waves. Phys., 2014, vol. 59, pp. 423-426. https://doi.org/10.1134/S1028335814090055">DOI

Eringen A.C. Mechanics of continua. New York: Huntington, 1980. 605

Kozhevnikova M.E., Rotanova T.A., Valov A.V. Computer simulation of the plane thermoelasticity problems: comparative analysis of coupled and uncoupled statements. mekh. splosh. sred – Computational continuum mechanics, 2017, vol. 10, no. 4, pp. 388-398. http://dx.doi.org/10.7242/1999-6691/2017.10.4.30">DOI

Amirkhanov I.V., Puzynin I.V., Puzynina T.P., Sarhadov I. Investigation of thermoelastic effects in metals in the frame of the modified thermal spike model. Vestnik RUDN. Seriya Matematika. Informatika. Fizika – RUDN Journal of Mathematics, Information Sciences and Physics, 2013, no. 2, pp. 77-84.

Boyko V.I., Daneykin Yu.V., Pimenov E.Yu., Lisov V.I. Kharakteristiki udarno-volnovogo vozmushcheniya v metallakh pri obluchenii ionnymi puchkami [Characteristics of a shock wave perturbation in metals irradiated by ion beams]. Vuzov. Fizika – Russian Physics Journal, 2014, vol. 57, no. 11/2, pp. 151-156.

Davydov S.A., Zemskov A.V., Tarlakovskiy D.V. Dvukhkomponentnoye uprugo diffuzionnoye poluprostranstvo pod deystviyem nestatsionarnykh vozmushcheniy [Two-component elastic diffusion half-space under the action of non-stationary perturbations]. Ekologicheskiy vestnik nauchnykh tsentrov ChES Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2014, no. 2, pp. 31-38.

Davydov S.A., Zemskov A.V., Tarlakovskiy D.V. Uprugoye poluprostranstvo pod deystviyem odnomernykh nestatsionarnykh diffuzionnykh vozmushcheniy [An elastic half space under the action of one-dimensional time-dependent diffusion perturbations]. zap. Kazan. un-ta. Fiz.-matem. Nauki – Scientific notes of the Kazan State University. Series: Physics and mathematics, 2014, vol. 156, no. 1, pp. 70-78.

Davydov S.A., Zemskov A.V., Tarlakovskii D.V. Surface green''s function in non-stationary problems of thermomechanical diffusion. PPP – The Problems of Strength and Plasticity, 2017, vol.79, no. 1, pp. 38-47.

Chumakov Yu.A., Knyazeva A.G. Interrelated processes of heat mass transfer and stress evolution in a disk with an inclusion under the action of high-density energy flow. mezomekh. – Physical mesomechanics, 2013, vol. 16, no. 2, pp. 85-91.

Konovalov S., Chen X., Sarychev V., Nevskii S., Gromov V., Trtica M. Mathematical modeling of the concentrated energy flow effect on metallic materials. Metals, 2017, vol. 7(1), 4. https://doi.org/10.3390/met7010004">DOI

Il'ina E.S., Demidov V.N., Knyazeva A.G. The modeling features of diffusion processes in elastic body under particles surface treatment. Vestnik PNIPU. Mekhanika – PNRPU Mechanics Bulletin, 2012, no. 3, pp. 25-49.

Sherief H.H., Hamza F.A., Saleh H.A. The theory of generalized thermoelastic diffusion. J. Eng. Sci., 2004, vol. 42, pp. 591‑608. https://doi.org/10.1016/j.ijengsci.2003.05.001">DOI

Aouadi M. Generalized theory of thermoelastic diffusion for anisotropic media. Therm. Stresses, 2008, vol. 31, pp. 270-285. https://doi.org/10.1080/01495730701876742">DOI

Knyazeva A.G. Diffuziya i reologiya v lokal’no-ravnovesnoy termodinamike [Diffusion and rheology in locally-equilibrium thermodynamics]. Vestnik PNIPU. Mekhanika – PNRPU Mechanics Bulletin, 2005, no. 13, pp. 45-60.

Knyazeva A.G. Nonlinear diffusion models of deformed media. mezomekh. – Physical mesomechanics, 2011, vol. 14, no. 6, pp. 35-51.

Sedov L.I. Mekhanika sploshnoy sredy [Continuum mechanics]. Moscow, Nauka, 1970. Vol. 1. 492 р.

Published

2019-03-30

Issue

Section

Articles

How to Cite

Parfenova, E. S., & Knyazeva, A. G. (2019). Non-isothermal mechanodiffusion model of the initial stage of penetration of particle flow in a target surface. Computational Continuum Mechanics, 12(1), 36-47. https://doi.org/10.7242/1999-6691/2019.12.1.4