Simulation of kerosene film atomization in air-assist atomizer with prefilmer

Authors

  • Stanislav Viktorovich Mingalev JSC «UEC-Aviadvigatel»
  • Aleksandr Aleksandrovich Inozemtsev JSC «UEC-Aviadvigatel»; Perm National Research Polytechnic University
  • Leonid Yul’yevich Gomzikov JSC «UEC-Aviadvigatel»
  • Aleksey Matveyevich Sipatov JSC «UEC-Aviadvigatel»; Perm National Research Polytechnic University
  • Taras Viktorovich Abramchuk JSC «UEC-Aviadvigatel»

DOI:

https://doi.org/10.7242/1999-6691/2019.12.1.3

Keywords:

air-assist atomizer, atomization, VOF method, axisymmetric swirl flow, aircraft engine, numerical simulation

Abstract

We applied the VOF method in an approximation of 2D axisymmetric swirl flow to study the primary atomization of kerosene film in an air-assist atomizer operating in conditions that are similar to cruise ones. The simulation was carried out on meshes whose characteristic element sizes were 0.78125, 1.5625, 3.125 and 6.25 µm. The solution does not change with the refinement of a mesh, when the cell size is 1.5625 µm. The obtained results indicated the presence of Kelvin-Helmholtz instability causing waves on the surface of the fuel film. After detachment of the film from the prefilmer edge, thinning of the film near the trough leads to rupture in this place. This film atomization regime can be matched with the regime identified for the atomization in an air-assist atomizer operating under standard conditions in a combustion chamber. The peculiarity of regime realization in the studied atomizer is that some fuel ligaments, appearing after film disintegration, move in radial direction into the stagnant zone. Note that the approximation of the axisymmetric swirl flow allows simulating only primary atomization. The studied problem arose due to the lack of information about the disintegration of a fuel film in an air-assist atomizer operating under conditions similar to cruise ones.

Downloads

Download data is not yet available.

References

Inozemtsev A.A., Konyayev E.A., Medvedev V.V., Nerad’ko A.V., Ryassov A.E. Aviatsionnyy dvigatel’ PS-90A [Aircraft engine PS-90A]. Мoscow, FIZMATLIT, 2007. 320 p.

Batalov V.G., Stepanov R.A., Sukhanovsky A.N. Primeneniye pryamykh opticheskikh metodov izmereniy dlya issledovaniya kharakteristik dvukhfaznogo potoka [Application of direct optical methods for investigation of two-phase flow characteristics]. Trudy MAI, 2014, no. 76, 20 p.

Kostarev K.G., Batalov V.G., Mizev A.I., Sukhanovskii A.N., Shmyrov A.V. Hydrodynamic aspects of the formation and disintegration processes of fuel film created by the injector of the combustion chamber of an aircraft engine. Vestnik permskogo nauchnogo centra UrO RAN – Bulletin of the Perm Scientific Center UB RAS, 2017, no. 1, pp. 52-56.

Batalov V.G., Stepanov R.A., Sukhanovsky A.N. Optical measurement of droplet dimensions in spray of fuel injector. Bulletin of Perm University. Physics, 2017, no. 3 (37), pp. 40-47. https://doi.org/10.17072/1994-3598-2017-3-40-47">DOI

Sivakumar D., Kulkarni V. Regimes of spray formation in gas-centered swirl coaxial atomizers. Fluids, 2011, vol. 51, pp. 587-596. https://doi.org/10.1007/s00348-011-1073-7">DOI

Garai A., Pal S., Mondal S., Ghosh S., Sen S., Mukhopadhyay A. Experimental investigation of spray characteristics of kerosene and ethanol-blended kerosene using a gas turbine hybrid atomizer. Sadhana, 2017, vol. 42, no. 4, pp. 543-555. URL: https://www.researchgate.net/publication/315458866_Experimental_investigation_of_spray_characteristics_of_kerosene_and_ethanol-blended_kerosene_using_a_gas_turbine_hybrid_atomizer">https://www.researchgate.net/publication/315458866_Experimental_investigation_of_spray_characteristics_of_kerosene_and_ethanol-blended_kerosene_using_a_gas_turbine_hybrid_atomizer

Galbiati C., Ertl M., Tonini S., Cossali G.E., Weigand B. DNS Investigation of the primary breakup in a conical swirled jet. High Performance Computing in Science and Engineering’15, ed. W. Nagel, D. Kröner, M. Resch. Springer, Cham, 2016. P. 333-347. https://doi.org/10.1007/978-3-319-24633-8_22">DOI

Rivas J.R.R., Pimenta A.P., Salcedo S.G., Rivas G.A.R., Suazo M.C.G. Study of internal flow of a bipropellant swirl injector of a rocket engine. Braz. Soc. Mech. Sci. Eng., 2018, vol. 40, pp. 289-305. https://doi.org/10.1007/s40430-018-1205-6">DOI

Rivas J.R.R., Pimenta A.P., Rivas G.A.R. Development of a mathematical model and 3D numerical simulation of the internal flow in a conical swirl atomizer. Atomization Sprays, 2014, vol. 24, pp. 97-114. https://doi.org/10.1615/AtomizSpr.2013007495">DOI

Khandelwal B., Lili D., Sethi V. Design and study on performance of axial swirler for annular combustor by changing different design parameters. Energy Inst., 2014, vol. 87, pp. 372-382. https://doi.org/10.1016/j.joei.2014.03.022">DOI

Marudhappan R., Chandrasekhar U., Reddy K.H. Optimization of simplex atomizer inlet port configuration through computational fluid dynamics and experimental study for aero-gas turbine applications. Inst. Eng. India Ser. C, 2017, vol. 98, pp. 595-606. https://doi.org/10.1007/s40032-016-0300-7">DOI

Li X.-g., Fritsching U. Process modeling pressure-swirl-gas-atomization for metal powder production. Mater. Process. Tech., 2017, vol. 239, pp. 1-17. https://doi.org/10.1016/j.jmatprotec.2016.08.009">DOI

Warncke K., Gepperth S., Sauer B., Sadiki A., Janicka J., Koch R., Bauer H.-J. Experimental and numerical investigation of the primary breakup of an airblasted liquid sheet. J. Multiph. Flow, 2017, vol. 91, pp. 208-224. https://doi.org/10.1016/j.ijmultiphaseflow.2016.12.010">DOI

Sipatov A.M., Karabasov S.A., Gomzikov L.Yu., Abramchuk T.V., Semakov G.N. Structural optimization of the air-blast atomizer based on three-dimensional simulation techniques. Aeronaut., 2014, vol. 57, pp. 75-83. https://doi.org/10.3103/S1068799814010115">DOI

Ma P.C., Esclapez L., Carbajal S., Ihme M., Buschhagen T., Naik S.V., Gore J.P., Lucht R.P. of the 54th AIAA Aerospace Sciences Meeting, San Diego, California, USA, January 4-8, 2016. Vol. 14, pp. 12056-12064. https://doi.org/10.2514/6.2016-1393">DOI

Sipatov A.M., Karabasov S.A., Gomzikov L.Yu., Abramchuk T.V., Semakov G.N. Application of three-dimensional numerical study in air-blast atomizer designing. Vychisl. meh. splos. sred – Computational Continuum Mechanics, 2013, Vol. 6, no. 3, pp. 346-353. http://dx.doi.org/10.7242/1999-6691/2013.6.3.39">DOI

Mingalev S.V., Gomzikov L.Y., Sipatov A.M., Abramchuk T.V. The simulation of film atomization in an air-blast atomizer with pre-filmer by the VOF method. Proc. of the 5th All-Russian conference Perm hydrodynamic readings, Sep. 26-29, 2018, Perm, Russia, PSU, 2018, p. 207-209

ASME V&V 20-2009. Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer (2009), American National Standard, New York: ASME.

Mingalev S.V. Modelirovanie raspylivanija zhidkosti v forsunke s pomoshh'ju metoda ob’emov [Simulation of atomization of liquid in the nozzle using the volume of fluid method], Technical report 60353, JSC «UEC-Aviadvigatel» ,Perm, 2017, 15 p.

Patankar S.V. Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, 1980. 212 p. Pp. 118-120.

Youngs D.L. Time-dependent multi-material flow with large fluid distortion. Numerical methods in fluid dynamics, ed. K.W. Morton, M.J. Baines. Academic Press, 1982. P. 273-285.

Kazimardanov M.G., Mingalev S.V., Lubimova T.P., Gomzikov L.Yu. Simulation of primary atomization due to Kelvin-Helmholtz instability. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2017, vol. 10, no. 4, pp. 416-425. http://dx.doi.org/10.7242/1999-6691/2017.10.4.33">DOI

Kulkarni V., Sivakumar D., Oommen C., Tharakan T.J. Liquid sheet breakup in gas-centered swirl coaxial atomizers. Fluids Eng., 2010, vol. 132, no. 1, 011303. http://dx.doi.org/10.1115/1.4000737">DOI

Kim D., Im J.-H., Koh H., Yoon Y. Effect of ambient gas density on spray characteristics of swirling liquid sheets. Propul. Power, 2007, vol. 23, no. 3, pp. 603-611. https://doi.org/10.2514/1.20161">DOI

Inamura T., Tamura H., Sakamoto H. Characteristics of liquid film and spray injected from swirl coaxial injector. Propul. Power, 2003, vol. 19, no. 4, pp. 632-639. https://doi.org/10.2514/2.6151">DOI

Published

2019-03-30

Issue

Section

Articles

How to Cite

Mingalev, S. V., Inozemtsev, A. A., Gomzikov, L. Y., Sipatov, A. M., & Abramchuk, T. V. (2019). Simulation of kerosene film atomization in air-assist atomizer with prefilmer. Computational Continuum Mechanics, 12(1), 27-35. https://doi.org/10.7242/1999-6691/2019.12.1.3