The dependence of the crystallization front shape on the heat exchange regime in the Bridgman-Stockbarger method

Authors

  • Konstantin Aleksandrovich Mitin Institute of Thermal Physics SB RAS; Novosibirsk State Technical University
  • Vladimir Stepanovich Berdnikov Institute of Thermal Physics SB RAS; Novosibirsk State Technical University
  • Stepan Aleksandrovich Kislitsin Institute of Thermal Physics SB RAS; Novosibirsk State Technical University

DOI:

https://doi.org/10.7242/1999-6691/2019.12.1.10

Keywords:

crystal growth from the melt, the Bridgman-Stockbarger method, conjugate convective heat transfer, the phase transition heat, numerical simulation, the finite element method

Abstract

The growth of a silicon ingot in the Bridgman-Stockbarger crystal-melt-crucible system, similar to that used in real technology is studied numerically in the axisymmetric formulation by the finite element method. The simulation was carried out taking into account the heat of phase transition under conditions of unsteady thermal conductivity and natural convection at the initial heating of the melt up to 40 K and two rates of crucible lowering. The temperature gradient along the lower part of the side wall of the crucible is linear and equal to 35 K/cm or 70 K/cm. A comparison between the crystallization processes in the unsteady heat conduction regime and the natural convection regime is carried out. The dependence of the shape of the crystallization front on the heat transfer modes is investigated. It has been shown that in all heat conduction modes being considered, the crystallization front has a convex shape during the entire crystallization process. Moreover, the shape of the crystallization front in the examined range of parameters weakly depends on the crucible lowering rate, but is drastically influenced by the temperature gradient on the crucible walls. Under conditions of hermogravitational convection the shape of the crystallization front strongly depends on the crucible lowering rate and temperature gradient on the side walls of the crucible. At some parameters, a secondary convective vortex can be generated over the crystal during the crystallization process. Depending on the combinations of temperature gradient on the side walls and the lowering rate of the crucible, the shape of the crystallization front can be either concave or convex.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при поддержке РФФИ (проект № 18-38-00790-мол_а).

References

Vil’ke K.-T. Vyrashchivaniye kristallov [Crystal growing]. Leningrad, Nedra, 1977. 600 p.

Vasil’yeva I.E., Eliseyev I.A., Eremin V.P., Zolotayko A.V., Krasin B.A., Nepomnyashchikh A.I., Popov S.I., Sinitskiy V.V. Mul’tikristallicheskiy kremniy dlya solnechnoy energetiki. MET – Materials of Electronics Engineering, 2002, no. 2, pp. 16-24.

Krasin B.A., Nepomnyaschikh A.I., Tokarev A.S., Shamirzaev T.S., Presnyakov R.V., Maksikov A.P. Structure and electrophysics of multicrystalline silicon. MET – Materials of Electronics Engineering, 2005, no. 1, pp. 28-34.

Berdnikov V.S., Kudryavtseva M.A., Khomutova I.V. The Sixth Int. Conf. and Fifth School of young scientists and specialists on actual problems of physics, materials science, technology and diagnostics of silicon, nanometer structures and devices based on it, 7-10 July 2009, Novosibirsk, Russian Federation. Abstract Book, pp. 42-43.

Nepomnyshchikh A.I., Presnyakov R.V., Antonov P.V., Berdnikov V.S. Effect of crucible rotation rate on the growth and macrostructure of multicrystalline silicon. Mater., 2014, vol. 50, pp. 1185-1190. https://doi.org/10.1134/S0020168514110119">DOI

Alferov Zh.I., Andreev V.M., Rumyantsev V.D. Solar photovoltaics: Trends and prospects. Semiconductors, 2004, vol. 38, pp. 899-908. https://doi.org/10.1134/1.1787110">DOI

Anfimov I.M., Berdnikov V.S., Vigovskaya E.A., Kobeleva S.P., Smirnov A.A., Osipov Yu.V., Toropova O.V., Murashev V.N. Uniformity of distribution of specific electroresistance in the monocrystalline silicon wafers (Cz). MET – Materials of Electronics Engineering, 2007, no. 4, pp. 40-44.

Berdnikov V.S., Filippova M.V., Krasin B.A., Nepomnyashchikh A.I. Numerical simulation of thermal-physical processes accompanying multisilicon crystal growing by the method of Bridgman–Stockbarger. Aeromech., 2006, vol. 13, pp. 257-274. https://doi.org/10.1134/S0869864306020089">DOI

Chandrasekhar S. Hydrodynamic and hydromagnetic stability. Oxford, Clarendon Press, 1961. 704 p.

Antonov P.V., Berdnikov V.S. Dependences of the shape of the crystallization front and growth rate of a silicon ingot on the heat transfer mode in the Bridgman-Stockbarger method. Appl. Mech. Tech. Phy., 2012, vol. 53, pp. 860-870. https://doi.org/10.1134/S0021894412060089">DOI

Antonov P.V., Berdnikov V.S. Influence of the form of crucible bottom on conjugate convective heat exchange in Bridgman method. MET – Materials of Electronics Engineering, 2011, no. 4, pp. 21-28.

Ben Sassi M., Kaddeche S., Lappa M., Millet S., Henry D., Ben Hadid H. On the effect of thermodiffusion on solute segregation during the growth of semiconductor materials by the vertical Bridgman method. Cryst. Growth, 2017, vol. 458, pp. 154‑165. https://doi.org/10.1016/j.jcrysgro.2016.09.043">DOI

Meier D., Lukin G., Thieme N., Bönisch P., Dadzis K., Büttner L., Pätzold O., Czarske J., Stelter M. Design of model experiments for melt flow and solidification in a square container under time-dependent magnetic fields. Cryst. Growth, 2017, vol. 461, pp. 30-37. https://doi.org/10.1016/j.jcrysgro.2016.12.097">DOI

Nepomnyashich A.I., Presnyakov R.V., Antonov P.V., Berdnikov V.S. Single crystalline growth of silicon on crucible flat bottom. VUZov. Prikladnaya khimiya i biotekhnologiya – Proceedings of Universities. Applied Chemistry and Biotechnology, 2015, no. 1(12), pp. 11-17.

Samarskiy A.A., Vabishchevich P.N. Vychislitel’naya teploperedacha [Computational heat transfer]. Moscow, Editorial URSS, 2003. 784 p.

Műhlbauer A., Muiznikes A., Virbulis J., Lűdge A., Riemann H. Interface shape, heat transfer and fluid flow in the floating zone growth of large silicon crystals with the needle-eye technique. Cryst. Growth, 1995, vol. 151, pp. 66-79. https://doi.org/10.1016/0022-0248(95)00027-5">DOI

Yaws C.L., Dickens L.L., Lutwak R., Hsu G. Semiconductor industry silicon: Physical and thermodynamic properties. Solid State Technol., 1981, vol. 24, no. 1, pp. 87-92.

Drits M.E. (ed.) Svoystva elementov [Properties of elements]. Moscow, Zhurn. «Tsv. metally», 1997. Vol. 1. 446 с.

Stankus S.V., Khairulin R.A., Tyagel'skii P.V. The thermal properties of germanium and silicon in condensed state. High Temp., 1999, vol. 37, pp. 529-534.

Raskatov V.M. (ed.) Mashinostroitel’nyye materialy: Kratkiy spravochnik [Engineering materials: Quick reference]. Moscow, Mashinostroyeniye, 1980. 511 p.

Stankus S.V., Savchenko I.V., Agadzhanov A.S., Yatsuk O.S., Zhmurikov E.I. Thermophysical properties of MPG-6 graphite. High Temp., 2013, vol. 51, pp. 179-182. https://doi.org/10.1134/S0018151X13010173">DOI

Skvortsov A.V. Triangulyatsiya Delone i eye primeneniye [Delaunay triangulation and its application]. Tomsk, Tomsk State University, 2002. 128 p.

Published

2019-03-30

Issue

Section

Articles

How to Cite

Mitin, K. A., Berdnikov, V. S., & Kislitsin, S. A. (2019). The dependence of the crystallization front shape on the heat exchange regime in the Bridgman-Stockbarger method. Computational Continuum Mechanics, 12(1), 106-116. https://doi.org/10.7242/1999-6691/2019.12.1.10