Turbulent convection of liquid sodium in an inclined cylinder of unit aspect ratio

Authors

  • Sergey Dmitriyevich Mandrykin Institute of Continuous Media Mechanics UB RAS
  • Andrey Sergeyevich Teimurazov Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2018.11.4.32

Keywords:

convection, turbulence, low Prandtl numbers, liquid metal

Abstract

Turbulent convection of liquid sodium (Prandtl number Pr = 0.0093) in a cylinder of unit aspect ratio, heated at one end face and cooled at the other, is studied numerically. The flow regimes with inclination angles β = 0, 20, 40, 70° with respect to the vertical are considered. The Rayleigh number is 1.5∙107. Three-dimensional nonstationary simulations allow one to get instant and average characteristics of the process and to study temperature pulsation fields. A mathematical model is based on the Boussinesq equations for thermogravitational convection with use of the LES (large-eddy simulations) approach for small-scale turbulence modeling. Simulations were carried out with a non-uniform numerical grid consisting of 2.9·106nodes. It is shown that the flow structure strongly depends on β. The large-scale circulation (LSC) exists in the cylinder at any β. Under moderate inclination (β = 20°), the strong oscillations of the LSC orientation angle with dominant frequency are observed. Increasing the inclination up to 40º leads to stabilization of the large-scale flow and there is no dominant frequency of oscillations in this case. It is shown that more intensive temperature pulsations occur at small cylinder inclinations. At any β the regions with intensive pulsations are concentrated in the areas along low and upper cylinder faces. The maximum values of pulsations occur in the area close to lateral walls, where hot and cold fluid flows collide. The intensity of temperature pulsations decreases with increasing distance from the lateral walls. The Reynolds number which characterizes the total energy of the flow reaches its maximum value at β = 20° and then decreases with increasing β. The mean flow has maximum intensity at β = 40°. Turbulent velocity pulsation energy decreases monotonically with increasing inclination angle. It is shown that the inclination leads to an increase in heat transfer along the cylinder axis. The Nusselt number at β = 40° is 26% higher than that in the vertical cylinder.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при поддержке РФФИ (проект № 16-01-00459-а).

References

Ahlers G., Grossmann S., Lohse D. Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection. Mod. Phys., 2009, vol. 81, no. 2, pp. 503-537. DOI

Chilla F., Schumacher J. New perspectives in turbulent Rayleigh-Benard convection. Phys. J. E, 2012, vol. 35,
no. 7, 58. DOI

Kolesnichenko I., Khalilov R., Teimurazov A., Frick P. On boundary conditions in liquid sodium convective experiments. Phys. Conf. Ser., 2017, vol. 891, no. 1, 012075. DOI

Khalilov R., Kolesnichenko I., Pavlinov A., Mamykin A., Shestakov A., Frick P. Thermal convection of liquid sodium in inclined cylinders. Rev. Fluids, 2018, vol. 3, no. 4, 043503. DOI

Scheel J.D., Schumacher J. Predicting transition ranges to fully turbulent viscous boundary layers in low Prandtl number convection flows. Rev. Fluids, 2017, vol. 2, no. 12, 123501. DOI

Teimurazov A., Frick P. Thermal convection of liquid metal in a long inclined cylinder. Rev. Fluids, 2017, vol. 2, no. 11, 113501. DOI

Frick P., Khalilov R., Kolesnichenko I., Mamykin A., Pakholkov V., Pavlinov A., Rogozhkin S. Turbulent convective heat transfer in a long cylinder with liquid sodium. Lett., 2015, vol. 109, no. 1, 14002. DOI

Vasil’ev A.Y., Kolesnichenko I.V., Mamykin A.D., Frick P.G., Khalilov R.I., Rogozhkin S.A., Pakholkov V.V. Turbulent convective heat transfer in an inclined tube filled with sodium. Phys., 2015, vol. 60, no. 9, pp. 1305-1309. DOI

Guo S.-X., Zhou S.-Q., Cen X.-R., Qu L., Lu Y.-Z., Sun L., Shang X.-D. The effect of cell tilting on turbulent thermal convection in a rectangular cell. Fluid Mech., 2014, vol. 762, pp. 273-287. DOI

Shishkina O., Horn S. Thermal convection in inclined cylindrical containers. Fluid Mech., 2016, vol. 790, R3. DOI

Kolesnichenko I.V., Mamykin A.D., Pavlinov A.M., Pakholkov V.V., Rogozhkin S.A., Frick P.G., Khalilov R.I., Shepelev S.F. Experimental study on free convection of sodium in a long cylinder. Eng., 2015, vol. 62, no. 6, pp. 414-422. DOI

Zwirner L., Shishkina O. Confined inclined thermal convection in low-Prandtl-number fluids. Fluid Mech., 2018, vol. 850, pp. 984-1008. DOI

Kirillov P.L., Deniskina N.B. Teplofizicheskiye svoystva zhidkometallicheskikh teplonositeley (spravochnyye tablitsy i sootnosheniya). TsNIIAtominform, 2000. 42 p.

Smagorinsky J. General circulation experiments with the primitive equations. I. The basic experiment. Weather Rev., 1963, vol. 91, pp. 99-164. DOI

Deardorff J.W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Fluid Mech., 1970, vol. 41, pp. 453-480. DOI

Weller H.G., Tabor G., Jasak H., Fureby C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Phys., 1998, vol. 12, pp. 620-631. DOI

Issa R. Solution of the implicitly discretised fluid flow equations by operator-splitting. Comput. Phys., 1986, vol. 62, no. 1, pp. 40-65. DOI

Ferziger J.H., Peric M. Computational Methods for Fluid Dynamics. Springer, 2002. 423 p.

Fletcher R. Conjugate gradient methods for indefinite systems. Numerical Analysis. Lecture Notes in Mathematics,
506, ed. G.A. Watson. Springer, 1976. Pp. 73-89. DOI

Verzicco R., Camussi R. Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. Fluid Mech., 2003, vol. 477, pp. 19-49. DOI

Stevens R.J.A.M., Verzicco R., Lohse D. Radial boundary layer structure and Nusselt number in Rayleigh-Benard convection. Fluid Mech., 2010, vol. 643, pp. 495-507. DOI

Shishkina O., Stevens R.J.A.M., Grossmann S., Lohse D. Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys., 2010, vol. 12, no. 7, 075022. DOI

Cioni S., Ciliberto S., Sommeria J. Strongly turbulent Rayleigh-Benard convection in mercury: comparison with results at moderate Prandtl number. Fluid Mech., 1997, vol. 335, pp. 111-140. DOI

Published

2018-12-30

Issue

Section

Articles

How to Cite

Mandrykin, S. D., & Teimurazov, A. S. (2018). Turbulent convection of liquid sodium in an inclined cylinder of unit aspect ratio. Computational Continuum Mechanics, 11(4), 417-428. https://doi.org/10.7242/1999-6691/2018.11.4.32