About estimation of sensitivity of statistical multilevel polycrystalline metal models to parameter variations
DOI:
https://doi.org/10.7242/1999-6691/2018.11.2.17Keywords:
multilevel constitutive model, mathematical model sensitivity, variations of model parametersAbstract
Analysis of the influence of variations of the parameters characterizing the properties of a modeled object on response change (sensitivity analysis for model parameter perturbations) is an important stage in studying the features of nonlinear mathematical models. The relevance of this research for material models is based on stochasticity of most material characteristics, and therefore constitutive mathematical models used in technological processes calculations must be stable with regard to variation of material parameters, which allows one to avoid precise experimental identification of product material properties in each particular case. It is reasonable to use multilevel constitutive models of materials, which makes it possible to describe explicitly the mechanisms of inelastic deformation, as well as the material structure evolution and the corresponding changes in physical and mechanical properties. This article provides the method of sensitivity estimation to parameter perturbations for models of this type, which is based on an integral comparison of response histories for perturbed and unperturbed sets of parameters for several types of loading. The results of application of the proposed technique to the two-level statistical model of polycrystalline metals, which includes the description of intragranular dislocation sliding and crystallite lattice rotations, and to the modified three-level model, which additionally contains the description of grain-boundary sliding mechanism, are presented. The obtained results demonstrate the stability of the considered mathematical models with respect to parameter changes. The ordering of model parameters by their sensitivity to perturbations is performed on the basis of the analysis carried out in this study.
Downloads
References
Panin V.E. (ed.) Fizicheskaya mezomekhanika i komp’yuternoye konstruirovaniye materialov [Physical mesomechanics and the computer design of materials]. Novosibirsk: Nauka, 1995. Vol. 1, 298 p., Vol. 2, 320 p.
Ghoniem N.M., Busso E.P., Kioussis N., Huang H. Multiscale modelling of nanomechanics and micromechanics: an overview. Mag., 2003, vol. 83, no. 31-34, pp. 3475-3528. DOI
McDowell D.L. A perspective on trends in multiscale plasticity. J. Plast., 2010, vol. 26, no. 9, pp. 1280-1309. DOI
Trusov P.V., Shveykin A.I. Multilevel crystal plasticity models of single- and polycrystals. Statistical models. Mesomech., 2013, vol. 16, no. 1, pp. 23-33. DOI
Trusov P.V., Shveykin A.I. Multilevel crystal plasticity models of single- and polycrystals. Direct models. Mesomech., 2013, vol. 16, no. 2, pp. 99-124. DOI
Guo Y.B., Wen Q., Horstemeyer M.F. An internal state variable plasticity-based approach to determine dynamic loading history effects on material property in manufacturing processes. J. Mech. Sci., 2005, vol. 47, no. 9, pp. 1423-1441. DOI
Trusov P.V., Ashikhmin V.N., Volegov P.S., Shveykin A.I. Constitutive relations and their application to the description of microstructure evolution. Mesomech., 2010, vol. 13, no. 1-2, pp. 38-46. DOI
Saї K. Multi-mechanism models: present state and future trends. J. Plast., 2011, vol. 27, no. 2, pp. 250-281. DOI
Maugin G.A. The saga of internal variables of state in continuum thermo-mechanics (1893-2013). Res. Comm., 2015, vol. 69, pp. 79-86. DOI
Truesdell C. A first course in rational continuum mechanics. USA, Maryland, Baltimore, The Johns Hopkins University, 1972. 304 p.
Il’yushin A.A. Plastichnost’. Osnovy obshchey matematicheskoy teorii. – M.: AN SSSR [ Fundamentals of the general mathematical theory]. – Moscow: AN SSSR, 1963. – 272 p.
Likhachev V.A., Malinin V.G. Strukturno-analiticheskaya teoriya prochnosti [Structural-analytical theory of strength]. – St. Petersburg: Nauka, 1993. – 471 p.
Lomakin E.V. Mechanics of media with stress-state dependent properties. Mesomech., 2007, vol. 10, no. 5-6, pp. 255-264. DOI
Sobol I.M. Global’nyye pokazateli chuvstvitel’nosti dlya izucheniya nelineynykh matematicheskikh modeley [Global sensitivity indices for the investigation of nonlinear mathematical models]. modelirovanie – Math. modeling, 2005, vol. 17, no. 9, pp. 43-52.
Saltelli A., Ratto M., Tarantola S., Campolongo F. Sensitivity analysis practices: strategies for model-based inference. Eng. Syst. Saf., 2006, vol. 91, pp. 1109-1125. DOI
Saltelli A., Ratto M., Andres T., Campolongo F., Cariboni J., Gatelli D., Saisana M., Tarantola S. Global sensitivity analysis. The Primer. England, John Wiley & Sons Ltd, 2008. 292 p.
Bashkirtseva I.A., Ryashko L.B., Tsvetkov I.N. Stokhasticheskaya chuvstvitel’nost’ ravnovesiy i tsiklov odnomernykh diskretnykh otobrazheniy [Stochastic sensitivity of equilibrium and cycles of 1d discrete maps]. vys. uch. zav. Prikl. nelin. din. – Proc. of high educat. inst. Appl. nonlinear dyn., 2009, vol. 17, no. 6, pp. 74-85.
Khvorova L.A. Metody issledovaniya chuvstvitel’nosti modeley produktivnosti agroekosistem [The Research on the Sensitivity of Models of Agroecosystems’ Productivity]. Alt. gos. un. – Proc. of the Altai St. Un., 2013, no. 1-1 (77), pp. 128-132.
Agoshkov V.I., Parmuzin E.I., Shutyaev V.P. Observational data assimilation in the problem of Black Sea circulation and sensitivity analysis of its solution. Atmos. Ocean. Phys., 2013, vol. 49, no. 6, pp. 592-602. DOI
Nurislamova L.F., Gubaydullin I.M. Reduktsiya detal’nykh skhem khimicheskikh prevrashcheniy okislitel’nykh reaktsiy formal’degida i vodoroda na osnovanii rezul’tatov analiza chuvstvitel’nosti matematicheskoy modeli [Reduction of detailed schemes of chemical transformations of formaldehyde and hydrogen oxidation reactions based on a sensitivity analysis of a mathematical model]. met. i programmirovanie: novye vych. tekhn.– Comput. meth. and programming: new comput. techn., 2014, vol. 15, no. 4, pp. 685-696.
Haug E.J., Choi K.K., Komkov V. Design sensitivity analysis of structural systems. Academic Press, 1986. 381 p.
Kleiber M., Hien T.D., Postek E. Incremental finite element sensitivity analysis for non-linear mechanics applications. J. Numer. Meth. Eng., 1994, vol. 37, no. 19, pp. 3291-3308. DOI
Gutiérrez M.A., de Borst R. Simulation of size-effect behaviour through sensitivity analyses. Fract. Mech., 2003, vol. 70, no. 16, pp. 2269-2279. DOI
Khaledi K, Mahmoudi E, Datcheva M, König D, Schanz T. Sensitivity analysis and parameter identification of a time dependent constitutive model for rock salt. Comput. Appl. Math., 2016, vol. 293, pp. 128-138. DOI
Yang Z., Elgamal A. Application of unconstrained optimization and sensitivity analysis to calibration of a soil constitutive model. J. Numer. Anal. Meth. Geomech., 2003, vol. 27, No. 15, pp. 1277-1297. DOI
Qu J., Xu B., Jin Q. Parameter identification method of large macro-micro coupled constitutive models based on identifiability analysis. CMC, 2010, vol. 20, no. 2, pp. 119-157. DOI
Bronkhorst C.A., Kalidindi S.R., Anand L. Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals. Trans. Math. Phys. Eng. Sci., 1992, vol. 341, no. 1662, pp. 443-477. DOI
Van Houtte P. Crystal plasticity based modelling of deformation textures // Microstructure and Texture in Steels / Haldar A., Suwas S., Bhattacharjee D. (eds). London: Springer, 2009, pp. 209-224. DOI
Dancette S., Delannay L., Jodlowski T., Giovanola J. Multisite model prediction of texture induced anisotropy in brass. J. Mater. Form., 2010, vol. 3, no 1, pp. 251-254. DOI
Trusov P.V., Shveykin A.I., Nechaeva E.S., Volegov P.S. Multilevel models of inelastic deformation of materials and their application for description of internal structure evolution. Mesomech., 2012, vol. 15, no. 3-4, pp. 155-175. DOI
Trusov P.V., Shveykin A.I., Yanz A.Y. Motion decomposition, frame-indifferent derivatives, and constitutive relations at large displacement gradients from the viewpoint of multilevel modeling. Mesomech., 2017, vol. 20, no. 4, pp. 357-376. DOI
Shveykin A.I., Trusov P.V. Sopostavlenie sformulirovannyh v terminah aktual’noj i razgruzhennoj konfiguracij geometricheski nelinejnyh uprugovyazkoplasticheskih opredelyayushchih sootnoshenij dlya kristallitov [Correlation between geometrically nonlinear elasto-visco-plastic constitutive relations formulated in terms of the actual and unloaded configurations for crystallites]. Fizicheskaya mezomekhanika – Physical mesomechanics., 2016, vol. 19, no. 5, pp. 48-57.
Mandel J. Equations constitutives et directeurs dans les milieux plastiques et viscoplastiquest. J. Solid. Struct., 1973, vol. 9, no. 6. pp. 725-740. DOI
Gérard C., Cailletaud G., Bacroix B. Modeling of latent hardening produced by complex loading paths in FCC alloys. J. Plast., 2013, vol. 42, pp. 194-212. DOI
Khadyko M., Dumoulin S., Cailletaud G., Hopperstad O.S. Latent hardening and plastic anisotropy evolution in AA6060 aluminium alloy. J. Plast., 2016, vol. 76, pp. 51-74. DOI
Anand L. Single-crystal elasto-viscoplasticity: application to texture evolution in polycrystalline metals at large strains. Meth. Appl. Mech. Eng., 2004, vol. 93, no. 48-51, pp. 5359-5383. DOI
Shveykin A.I. Mnogourovnevyye modeli polikristallicheskikh metallov: sopostavleniye opredelyayushchikh sootnosheniy dlya kristallitov [Multilevel models of polycrystalline metals: comparison of constitutive relations for crystallites]. prochnosti i plastichnosti – Probl. of strength and plasticity, 2017, vol. 79, no. 4, pp. 385-397.
Harder J. FEM-simulation of the hardening behavior of FCC single crystals. Acta Mech., 2001, vol. 150, no. 3-4, pp. 197-217. DOI
Trusov P.V., Shveykin A.I., Kondratev N.S. Multilevel metal models: formulation for large displacements gradients. Nanoscience and Technology: An International Journal, 2017, vol. 8, no. 2, pp. 133-166. DOI
Ostapovich K.V., Trusov P.V. Ob anizotropii uprugikh materialov: identifikaciya simmetrijnykh svojstv [On elastic anisotropy: symmetry identification]. Mekhanika kompozitsionnykh materialov i konstrukcii – Mechanics of composite materials and structures, 2016, vol. 22, no. 1, pp. 69-84.
McLean D. Grain boundaries in metals. Oxford: Clarendon Press, 1957. 346 p.
Gleiter H., Chalmers B. High‐angle grain boundaries. Oxford: Pergamon Press, 1972. 303 p.
Orlov A.N., Perevezentsev V.N., Rybin V.V. Granitsy zeren v metallakh [Grain boundaries in metals]. – Moscow, Metallurgiya, 1980. – 156 p.
CHuvil’deyev V.N. Neravnovesnyye granitsy zeren v metallakh. Teoriya i prilozheniya [Nonequilibrium grain boundaries in metals]. – Moscow, Fizmatlit, 2004. – 304 p.
Panin V.E., Egorushkin V.E., Elsukova T.F. Physical mesomechanics of grain boundary sliding in a deformable polycrystal. Mesomech., 2013, vol. 16, no. 1, pp. 1-8. DOI
Shveykin A.I., Sharifullina E.R. Development of multilevel models based on crystal plasticity: description of grain boundary sliding and evolution of grain structure. Nanoscience and Technology: An International Journal, 2015, vol. 6, no. 4, pp. 281-298. DOI
Sharifullina E.R., Shveykin A.I., Trusov P.V. Multilevel model of polycrystalline materials: grain boundary sliding description. IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 286, 012026. DOI
Trusov P.V., Sharifullina E.R., Shveykin A.I. Three-level modeling of fcc polycrystalline inelastic deformation: grain boundary sliding description. IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 71, 012081. DOI
Bricknell R.H., Edington J.W. Textures in a superplastic Al-6Cu-0.3Zr alloy. Acta Metall., 1979, vol. 27, no. 8, pp. 1303-1311. DOI
Pérez-Prado M.T., Gonzales-Doncel G. Texture changes during deformation of a 7475 superplastic aluminum sheet alloy. Textures and Microstructures, 2000, vol. 34, no. 1, pp. 33-42. DOI
Kuhlmann-Wilsdorf D., Kulkarni S.S., Moore J.T., Starke E.A. jr. Deformation bands, the LEDS theory, and their importance in texture development: Part I. Previous evidence and new observations. mater. trans. A., 1999, V. 30A, pp. 2491-2501. DOI
Shveykin A.I., Sharifullina E.R. Analiz konstitutivnykh sootnosheniy dlya opisaniya vnutrizerennogo dislokatsionnogo skol’zheniya v ramkakh dvukhurovnevoy uprugovyazkoplasticheskoy modeli GTsK-polikristallov [Analysis of constitutive relations for intragranular dislocation sliding description within two-level elasto-viscoplastic model of FCC-polycrystals]. Vestnik Tambovskogo gosudarstvennogo universiteta – Bulletin of Tambov State University, 2013, vol. 18, no. 4, pp.1665-1666.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.