Modelling of non-steady creep of bending reinforced plates made of nonlinear hereditary materials

Authors

  • Andrey Petrovich Yankovskii Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

DOI:

https://doi.org/10.7242/1999-6691/2018.11.1.8

Keywords:

bending plate, reinforcement, non-steady creep, nonlinear heredity, inelastic deformation, Reissner theory, Reddy theory, refined theory of bending

Abstract

On the basis of the equations of nonlinear hereditary Rabotnov’s theory of creep and the idea of the method of time steps, the problem on the rheonomic behavior of quasistatically bending plates cross- reinforced in their plane is formulated as the geometrically linear problem. The equations and relations are obtained to determine, at discrete points in time with different degree of accuracy, the stress-strain state of composite plates with account of their weak resistance to transversal shifts. The relations of the classical theory and the traditional non-classical Reissner and Reddy theories follow from the resulting equations as special cases. A model problem is considered for asymmetrically reinforced and loaded annular plates which are rigidly clamped on one edge and uniformly loaded on another edge. For this case a simplified version of the refined theory is developed, which has roughly the same implementation complexity as the theory of Reissner and Reddy. The specific calculations are carried out for the flexural deformation of the considered annular plates with spiral and spiral-circumferential reinforcements at short-term and long-term loading. It is demonstrated that, for composite plates (including metal matrix), with the relative thickness of the order of 1/10, neither the classical theory nor the theory of the Reissner and Reddy type do not guarantee reliable results for the determination of the deflection even under rough 10% accuracy. The accuracy of the calculations for these theories decreases with increasing time of long-term loading of reinforced structure. Using the equations of the refined theory, it has been found that in the process of bending flat reinforced plates, in some cases (e.g. for low-strong binders and high-modulus fibers), the strongly-pronounced boundary effects occur in a neighborhood of the supported edges, which characterize a sudden shift of these structures in transverse direction. It is shown that even at very low levels of lateral load, when the deflection is amount to only a few percent of the thickness of the reinforced plate, the strain in the binder can reach 5 % or more under long-time loading.

Downloads

Download data is not yet available.

References

Rabotnov Yu.N. Polzuchest’ elementov konstruktsiy [Creep of structural elements]. Moscow: Nauka, 1966, 752 p.

Rabotnov Yu.N. Elementy nasledstvennoy mekhaniki tverdykh tel [Elements of hereditary mechanics of solids]. Moscow: Fizmatgiz, 1977, 384 p.

Nikitemko A.F. Polzuchest’ i dlitel’naya prochnost’ metallicheskikh materialov [Creep and creep rupture strength metallic materials]. Novosibirsk: NSUCE Publ., 1997, 278 p.

Radchenko V.P., Eryemin Yu.A. Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii [Rheological deformation and destruction of materials and structural elements]. Moscow: Mashinostroenie-1, 2004, 264 p.

Lokoshtshenko A.M. Modelirovanie processa polzuchesti i dlitel′noi prochnosti metallov [Modeling of creep and long-term strength of metals]. Moscow: MSIU, 2007, 264 p.

Golotina L.A., Kozhevnikova L.L., Koshkina T.B. Numerical simulation of rheological properties of granular composites by using a structural approach. Compos. Mater., 2008, vol. 44, no. 6, pp. 633-640. DOI

Apet′yan V.E., Bykov D.L. Opredelenie nelineinykh vyazkouprugikh kharakteristik napolnennykh polimernylh materialov [Determination of nonlinear viscoelastic characteristics of filled polymeric materials]. Kosmonavtika i raketostroenie – Cosmonautics and Rocket Engineering, 2002, no. 3 (28), pp. 202-214.

Golub V.P., Kobzar′ Yu.M., Fernati P.P. Nelineinaya polzuchest′ voloknistykh odnonapravlennykh kompozitov pri rastyazhenii v napravlenii armirovaniya [Nonlinear creep of fibrous unidirectional composites under tension in the direction of reinforcement]. Prikladnaya mekhanika – Applied Mechanics, 2007, no. 5. pp. 20-34.

Kulikov R.G., Trufanov N.A., Application of iteration method for soling the problem of deformation of unidirectional composites with nonlinear viscoelastic matrix. meh. splos. sred – Computational Continuum Mechanics, 2011, vol. 4, no. 2, pp. 61-71. DOI

Kreger A.F., Teters G.A. Use of averaging methods to determine the viscoelastic properties of spatially reinforced composites. Compos. Mater., 1979, vol. 15, no. 4, pp. 377-382.

Kregers A.F., Teters G.A. Structural model of deformation of anisotropic three-dimensionally reinforced composites. Compos. Mater., 1982, vol. 18, no. 1, pp. 10-17.

Yankovskii A.P. Modeling the mechanical behavior of composites with a spatial reinforcement of nonlinear hereditary materials. Mekhanika kompozicionnykh materialov i konstrukcij Mechanics of composite materials and designs, 2012, no. 2, pp. 12-25.

Christensen R.M. Theory of Viscoelasticity. An Introduction. New York and London: Academic Press, 1971.

Il’yushin A.A. Tom 3. Teoriya termovyazkouprugosti [Works. Vol. 3. The theory of thermo-visco-elastic] / Compilers: E.A. Il’yushina, V.G. Tunguskova. Moscow: Fizmatlit, 2007, 288 p.

Goldhoff R.M. The application of Rabotnov’s creep parameter. ASTM, 1961, vol. 61.

Turner F.H., Blomquist K.E. A study of the applicability of Rabotnov’s creep parameter for aluminium alloy. JAS, 1956, vol. 23, no. 12.

Yankovskii A.P. Analiz polzuchesti armirovannykh balok-stenok iz nelinejno-nasledstvennykh materialov v ramkakh vtorogo varianta teorii Timoshenko [Analysis of creep of reinforced beams-wall from nonlinear-hereditary materials within of the second variant of Tymoshenko theory]. Mekhanika kompozicionnykh materialov i konstrukcij Mechanics of composite materials and designs, 2014, vol. 20, no. 3, pp. 469-489.

Yankovskii A.P. Steady-state creep of complexly reinforced shallow metal-composite shells. Compos. Mater., 2010, vol. 46, no. 1, pp. 89-100.

Nemirovskii Yu.V. Creep clamped plates with various reinforcement structures. Prikladnaja mekhanika i tekhnicheskaja fizika – Applied mechanics and technical physics. 2014, vol. 55, no. 1, pp. 179-186.

Reissner E. On bending of elastic plates. Quarterly of Applied Mathematics, 1947, vol. 5, no. 1, pp. 55-68.

Mindlin R.D. Thickness-shear and flexural vibrations of crystal plates. Journal of Applied Physics, 1951, vol. 23, no. 3. pp. 316-323.

WashizuVariational methods in elasticity and plasticity. Oxford – New York – Toronto – Sydney – Paris – Frankfurt: Pergamon Press, 1982.

Bazhenov V.A., Krivenko O.P., Solovei N.A. Nelineinoe deformirovanie i ustoichivost′ uprugikh obolochek neodnorodnoi struktury: Modeli, metody, algoritmy, maloizuchennye i novye zadachi [Nonlinear deformation and stability of elastic shells of non-uniform structure: Models, methods, algorithms, the insufficiently studied and new problems]. Moscow: Knizhnyi dom “LIBROKOM”, 2012. 336 p.

Reddy J.N. A refined nonlinear theory of plates with transverse shear deformation. J. of Solids and Structures, 1984, vol. 20, no. 9. pp. 881-896.

Reddy J.N. Energy and Variational Methods in Applied Mechanics. New York: John Wiley, 1984.

Ambarcumian S.A. Teoria anizotropnykh plastin. Prochnost’, ustoychivost’ i kolebania [The theory of anisotropic plates. Strength, stability and fluctuations]. Moscow: Nauka, 1987, 360 p

Malmeister A.K., Tamuzh V.P., Teters G.A. Soprotivlenie polimernykh i kompozitnykh materialov [Resistance polymeric and composite materials]. Riga, Zinatne Publ., 1980. 571 p.

Nemirovskii Yu.V., Reznikov B.S. Prochnost’ elementov konstrukcii iz kompozitnykh materialov [Strength of elements of designs from composites materials]. Novosibirsk: Nauka, 1986, 168 p.

Bogdanovich A.E. Nelineinye zadachi dinamiki tsilindricheskikh kompozitnykh obolochek [Nonlinear problems of the dynamics of cylindrical composite shells]. Riga: Zinatne, 1987. 295 p.

Kulikov G.M. Termouprugost’ gibkikh mnogosloinykh anizotropnykh obolochek [Thermo-elasticity flexible multilayered anisotropic shells]. Izvestia RAN. MTT – News RAS. Mechanics of Solids, 1994, no. 2, pp. 33-42.

Mau S. A refined laminated plates theory. Appl. Mech., 1973. vol. 40, no. 2. pp. 606-607.

Christensen R., Lo K., Wu E. A high-order theory of plate deformation. Part 1: homogeneous plates. Appl. Mech., 1977, vol. 44, no. 7, pp. 663-668.

Thai C.H. Analysis of laminated composite plates using higher-order shear deformation plate theory and mode-based smoother discrete shear gap method. Mathematical Modeling, 2012. vol. 36, no. 11. pp. 5657-5677.

Romanova T.P., Yankovskii A.P. Comparative analysis of models of bending deformation of reinforced walls-beams of nonlinear elastic materials. Problemy prochnosty i plastichnosti – Problems of Strength and Plasticity, 2014, vol. 76, no. 4, pp. 297-309.

Yankovskii A.P. A refined model of longitudinally reinforced metal composite wall-beams under steady creep conditions. Mathematical Models and Computer Simulations, 2017, vol. 9, no. 2, pp. 248-261.

Yankovskii A.P. Sravnitel′nyi analiz modelei termouprugoplasticheskogo izgibnogo deformirovania armirovannykh plastin [Comparative analysis of models of thermalelasticoplastic bending deformation of the reinforced plates]. Prikladnaia matematika i mekhanika Appl. Math. Mech. 2018, vol. 82, no. 1, pp. 58-83.

Karpov V.V. Prochnost’ i ustoichivost’ podkrepljennykh obolochek vrashchenia. V 2 ch. Ch. 1. Modeli i algoritmy issledovania prochnosti i ustoichivosti podkrepljennykh obolochek vrashchenia [Strength and stability of the supported shells of rotation. In 2 parts. A part 1. Models and algorithms of research of strong and stability of the supported shells of rotation]. Moscow: Fizmatlit, 2010. 288 p.

Karpov V.V. Prochnost’ i ustoichivost’ podkrepljennykh obolochek vrashchenia. V 2 ch. Ch. 2. Vychislitel’nyj eksperiment pri staticheskom mekhanicheskom vozdejstvii [Strength and stability of the supported shells of rotation. In 2 parts. A part 2. Computing experiment at static mechanical load]. Moscow: Fizmatlit, 2011. 248 p.

Yankovskii A.P. Modeling the creep of rib-reinforced composite media from nonlinear hereditary phase materials. 1. Structural model. Compos. Mater., 2015, vol. 51, no. 1, pp. 1-16.

Demidov S.P. Teotia uprugosti [The theory of elasticity]. Moscow: Vysshaya shkola, 1979. 432 p.

Kompozitsionnye materialy. Spravochnik [Composite materials. Reference Book], by D.M. Karpinos. Kiev, Naukova dumka Publ., 1985. 592 p.

Published

2018-04-23

Issue

Section

Articles

How to Cite

Yankovskii, A. P. (2018). Modelling of non-steady creep of bending reinforced plates made of nonlinear hereditary materials. Computational Continuum Mechanics, 11(1), 92-110. https://doi.org/10.7242/1999-6691/2018.11.1.8