Equilibrium forms of a liquid on the interior surface of a rotating cylinder and their stability

Authors

  • Oksana Aleksandrovna Burmistrova Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, Russian Federation

DOI:

https://doi.org/10.7242/1999-6691/2018.11.1.1

Keywords:

rimming flow, rotation, cylindrical layer, free boundary, Weber number, stability

Abstract

The problem of the viscous liquid, partially filling the cylindrical cavity of a finite length, which rotates with a constant angular velocity, is considered (the rimming flow) . It is assumed that the gravity force is absent. If the wetting angle is equal to π /2, equilibrium forms with cylindrical free surface exist (trivial forms of equilibrium). There exist values of the Weber number (bifurcation values) at which the nontrivial forms branch off from the trivial form of equilibrium. Graphics of the axisymmetric equilibrium forms of the liquid are constructed numerically. With the Weber number growth, the nontrivial forms increasingly deviate from the cylindrical equilibrium state. With a further increase in the values of the Weber number the topology of equilibrium forms changes, as the form contacts the cavity wall (when the liquid layer is thin) or its axis (when the liquid layer is thick).The stability of equilibrium states is investigated using Lagrange’s stability theorem and its converse. The cylindrical state is unstable when the values of the Weber numbers are less than the bifurcation value or slightly exceed the bifurcation value. The value of the Weber number, for which the trivial form of equilibrium becomes stable, is obtained. Nontrivial forms of equilibrium are unstable for all admissible values of the Weber number.

Downloads

Download data is not yet available.

References

Appell Traité de mécanique rationnelle. Tome 4. Fascicule 1. Figuresd’equilibre d’une masse liquide homogene en rotation [Treatise on rational mechanicsVol. IV. Issue 1. Equilibrium figures of a rotating homogeneous liquid]. Paris: Gauthier-Villars, 1932. 342 p.

Chandrasekhar SEllipsoidal Figures of Equilibrium. New Haven and London: Yale University Press, 1969. 252 p.

Slobozhanin L.A. Ob ustojchivosti cilindricheskogo ravnovesnogo sostoyaniya vrashchayushchejsya zhidkosti [Stability of a cylindrical equilibrium state in a rotating liquid]. Matematicheskaya fizika i funkcional’nyj analiz [Mathematical Physics and Functional Analysis]. Kharkiv: Fiziko-tekhnicheskij institut nizkikh temperatur AN USSR, 1971. 2nd ed.169-174.

Slobozhanin L.A. Ob odnoj zadache vetvleniya cilindricheskogo ravnovesnogo sostoyaniya vrashchayushchejsya zhidkosti [One problem in the branching of the equilibrium state of a rotating liquid]. Matematicheskaya fizika i funkcional’nyj analiz [Mathematical Physics and Functional Analysis]. Kharkiv: Fiziko-tekhnicheskij institut nizkikh temperatur AN USSR, 1971. 2nd ed.175-181.

Badratinova G. Stability loss in the cylindrical equilibrium state of a rotating liquid. J. Appl. Mech. Tech. Phys., 1981, vol. 22, no. 4, pp. 487‑499. DOI

Loginov B.V. Dopolnenie k stat’e L. A. Slobozhanina “Ob odnoj zadache vetvleniya cilindricheskogo ravnovesnogo sostoyaniya vrashchayushchejsya zhidkosti” [Response to L.A. Slobozhanin’s article ’One problem in the branching of the equilibrium state of a rotating liquid’]. Matematicheskaya fizika i funkcional’nyj analiz [Mathematical Physics and Functional Analysis]. Kharkiv: Fiziko-tekhnicheskij institut nizkikh temperatur AN USSR, 1973. 3nd ed.52-55.

Yih C.-S. (with an appendix by Kingman J.F.C.) Instability of a rotating liquid film with a free surface. R. Soc. Lond. A, 1960, vol. 258, no. 1292, pp. 63-89. DOI

Pukhnachev V. Motion of a liquid film on the surface of a rotating cylinder in a gravitational field. J. Appl. Mech. Tech. Phys., 1977, vol. 18, no. 3, pp. 344‑351. DOI

Moffatt H.K. Behaviour of a viscous film on the outer surface of a rotating cylinder. de Mécanique, 1977, vol. 16, no. 5., pp. 651-673.

Hinch E.J ., Kelmanson M.A. On the decay and drift of free-surface perturbations in viscous thin-film flow exterior to a rotating cylinder. R. Soc. Lond. A, 2003, vol. 459, no. 2033, pp. 1193-1213. DOI

Deiber J.A., Cerro L. Viscous flow with a free surface inside a horizontal rotating drum. I. Hydrodynamics. Ind. Eng. Chem. Fundam., 1976, vol. 15, no. 2, pp. 102-110. DOI

Johnson R.E. Steady-state coating flows inside a rotating horizontal cylinder. Fluid Mech., 1988, vol. 190, pp. 321-342. DOI

Ruschak J., Scriven L.E. Rimming flow of liquid in a rotating cylinder. J. Fluid Mech., 1976, vol. 76, no. 1, pp. 113-126. DOI

Orr F.M., Scriven E. Rimming flow : numerical simulation of steady, viscous, free-surface flow with surface tension. J. Fluid Mech., 1978, vol. 84, no. 1, pp. 145-165. DOI

Ashmore J., Hosoi A. E., Stone H. A. The effect of surface tension on rimming flows in a partially filled rotating cylinder. Fluid Mech., 2003, vol. 479, pp. 65-98. DOI

Benilov E.S, Kopteva N., O’Brien S.B.G. Does surface tension stabilize liquid films inside a rotating horizontal cylinder? J. Mech. Appl. Math., 2005, vol. 58, no. 2, pp. 185-200. DOI

Pougatch K., Frigaard I. Thin film flow on the inside surface of a horizontally rotating cylinder: Steady state solutions and their stability. Fluids., 2011, vol. 23, no. 2, pp. 022102. DOI

Leslie G.A., Wilson S.K., Duffy B.R. Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder. Fluid Mech., 2013, vol. 716, pp. 51-82. DOI

Aggarwal H., Tiwari N. Generalized linear stability of non-inertial rimming flow in a rotating horizontal cylinder. Phys. J. E, 2015, vol. 38, no. 10, pp. 111. DOI

Benilov E.S, Lapin V.N. Inertial instability of flows on the inside or outside of a rotating horizontal cylinder. Fluid Mech., 2013, vol. 736, pp. 107-129. DOI

DeblerR., Yih C.-S. Formation of rings in a liquid film attached to the inside of a rotating cylinder. J. Aerospace Sci., 1962, vol. 29, no. 3, p. 364. DOI

Thoroddsen T. , Mahadevan L. Experimental study of coating flows in a partially-filled horizontally rotating cylinder,Exp. Fluids., 1997, vol. 23, no. 1, pp. 1-13. DOI

IvanovaA., Kozlov V.G., Сhigrakov A.V. Dynamics of a fluid in a rotating horizontal cylinder, Fluid Dynamics, 2004, vol. 39, no. 4, pp. 594-604. DOI

Kozlov V.G., Polezhaev D.A. Stability of rimming flow under vibration. Microgravity Sci. Technol., 2009, vol. 21, no. 1-2, pp. 79-82. DOI

Dyakova V., Kozlov V., Polezhaev D. Pattern formation inside a rotating cylinder partially filled with liquid and granular medium. Shock and Vibration, 2014, vol. 2014, pp. 841320. DOI

Pukhnachev V. Branching of rotationally symmetric solutions describing the flow of a viscous liquid with a free surface. J. Appl. Mech. Tech. Phys., 1973, vol. 14, no. 2, pp. 253‑258. DOI

Konon P.N., Zhuk A.V. Bifurcations of equilibrium states of a fluid layer inside a rotating cylinder. Eng. Phys. Thermophys., 2017, vol. 90, no. 2, pp. 442‑448. DOI

Burmistrova O.A. VI All–Russian Conference with Foreign Participants “Free Boundary Problems: Theory, Experiment and Applications”, 7-11 August2017, Barnaul, Russian Federation. Abstract Book, p. 22.

Benilov E.S, O’Brien S.B.G. Inertial instability of a liquid film inside a rotating horizontal cylinder. Fluids., 2005, vol. 17, no. 5, pp. 052106. DOI

Crawford R.J., Throne J.LRotational molding technology. Norwich, NY: Plastics Design LibraryWilliam Andrew Publishing, 2002. 426 p.

Burmistrova O.A. Thermocapillary instability of a liquid layer on interior surface of a rotating cylinder. Phys. Conf. Ser., 2016, vol. 754, 032004. DOI

Myshkis A.D., Babskii V.G., Kopachevskii N.D., Slobozhanin L.A., Tyuptsov A.D. Low-Gravity fluid mechanics. Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer-Verlag, 583 p.

Solonnikov V.A. On the stability of axially symmetric equilibrium figures of a rotating viscous incompressible fluid. Petersburg Math. J., 2005, vol. 16, no. 2, pp. 377‑400. DOI

Published

2018-04-23

Issue

Section

Articles

How to Cite

Burmistrova, O. A. (2018). Equilibrium forms of a liquid on the interior surface of a rotating cylinder and their stability. Computational Continuum Mechanics, 11(1), 5-14. https://doi.org/10.7242/1999-6691/2018.11.1.1