Stress-state modeling in the vicinity of an optical fiber embedded Into polymer composite material taking into account the structural features of the composite

Authors

  • Natalia Aleksandrovna Kosheleva Institute of Continuous Media Mechanics UB RAS
  • Grigorii Sergeevich Serovaev Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2017.10.4.38

Keywords:

composite materials, optical fibers, stress-strain state, numerical simulation

Abstract

The present work is a fragment of two important scientific areas: mechanics of polymeric composite materials (PCM) and creation of new diagnostic tools and monitoring of the mechanical state of a structure based on the use of fiber-optic sensors. The nomenclature and the range of their applications expand very quickly. Currently, the percentage of composite materials is one of the indicators of respective products competitiveness indices. At the same time, theoretical developments that provide an assessment of the performance of PCM products, do not always meet designers requests on new products. Therefore, the model estimates should be supplemented with modern monitoring systems. Fiber-optic sensors offer opportunities for creating new monitoring scenarios. One of them is connected with the use of embedded sensors into PCM. In this case, a new kind of smart material appears, in which the PCM, along with the basic functions, provides information on its parameters: temperature, strain, etc. The creation of this class of smart materials requires the solution a number of tasks. Present work is devoted to the evaluation by mathematical modeling methods of changes in the stiffness and strength characteristics of PCM products due to optical fiber sensors embedding into material. In contrast to the known works, in computational models constructing, the following are taken into account: the layered structure of PCM; options for stacking layers; layers and optical fiber layout options; the presence of a technological defect in the form of a resin pocket with the elimination in the model of points of stress singularity that are present in known design schemes. The result of the work is the use of the proposed model for estimating the level of stress concentration in the layers of composite material adjacent to the optical fiber.

Downloads

Download data is not yet available.

References

Kelly A. Concise Encyclopedia of Composite Materials. - Elsevier Ltd, Cambridge, 1994. - 349 p.
2. Council N.R. New Materials for Next-Generation Commercial Transports - DC: The National Academies Press Elsevier Ltd, Washington, 1996. - 84 p.
3. Cai J., Qiu L., Yuan S., Shi L., Liu P., Liang D. Structural Health Monitoring for Composite Materials // Composites and Their Applications: InTech. - 2012. - P. 37-60.
4. Gebremichael Y., Li W., Boyle W.J.O., Meggitt B. T., Grattan K. T. V., McKinley B., Fernando G. F., Kister G., Winter D., Canning L., Luke S. Integration and assessment of fibre Bragg grating sensors in an all-fibre reinforced polymer composite road bridge // Sensors Actuators, A Phys. - 2005. - Vol. 118, no. 1. - P. 78-85.
5. Lee J.-R., Ryu C.-Y., Koo B.-Y., Kang S.-G., Hong C.-S., Kim C.-G. In-flight health monitoring of a subscale wing using a fiber Bragg grating sensor system // Smart Mater. Struct. - 2003. - Vol. 12. - P. 147-155.
6. Ghoshal A., Ayers J., Gurvich M., Urban M., Bordick N. Experimental investigations in embedded sensing of composite components in aerospace vehicles // Compos. Part B: Eng. - 2015. - Vol. 71. - P. 52-62.
7. Wymore M. L., Van Dam J. E., Ceylan H., Qiao D. A survey of health monitoring systems for wind turbines // Renew. Sustain. Energy Rev. - 2015. - Vol. 52, no. 1069283. - P. 976-990.
8. Sierra-Perez J., Torres-Arredondo M. A., Guemes A. Damage and nonlinearities detection in wind turbine blades based on strain field pattern recognition. FBGs, OBR and strain gauges comparison // Compos. Struct. - 2016. - Vol. 135. - P. 156-166.
9. Hong C. Y., Zhang Y. F., Zhang M. X., Leung L. M. G., Liu L. Q. Application of FBG sensors for geotechnical health monitoring, a review of sensor design, implementation methods and packaging techniques // Sensors Actuators, A: Phys. - 2016. - Vol. 244. - P. 184-197.
10. Takeda N. Recent Development of Structural Health Monitoring Technologies for Aircraft Composite Structures in Japan // Proc. 26th Int. Congr. Aeronaut. Sci. - 2008. - P. 12.
11. Kablov E. N., Sivakov D. V., Gulyaev I. N., Sorokin K. V., Fedotov M. Yu., Dianov E. M. Application of optical fiber as strain gauges in polymer composite materials // Polym. Sci. Ser. D. - 2011. - Vol. 4, no. 3. - P. 246-251.
12. Li X. X., Ren W. X., Bi K. M. FBG force-testing ring for bridge cable force monitoring and temperature compensation // Sensors Actuators, A Phys. - 2015. - Vol. 223. - P. 105-113.
13. Garcia I., Zubia J., Durana G., Aldabaldetreku G., Illarramendi M. A., Villatoro J. Optical Fiber Sensors for Aircraft Structural Health Monitoring // Sensors (Basel). - 2015. - Vol. 15, no. 7. - P. 15494-519.
14. Balac I., Milovancevic M. Stress field analysis around optical fiber embedded in composite laminae under transverse loading // FME Trans. - 2006. - Vol. 34, no. 1. - P. 53-56.
15. Luyckx G., Voet E., DeWaele W., Degrieck J. Multi-axial strain transfer from laminated CFRP composites to embedded Bragg sensor: I. Parametric study // Smart Mater. Struct. - 2010. - Vol. 19, no. 10. - P. 1-9.
16. Maksidov V. Fedotov M.,Sienok A., Zuev M. K voprosu ob integraciip optovolokna v PKM i izmerenii deformacii materiala s pomos’u volokonnyh breggovskih resetok // MKMK. - 2014. - T. 20, No. 4. - S. 568-574.
17. Di Sante R. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications // Sensors. - 2015. - Vol. 15, no. 8. - P. 18666-18713.
18. Majumder M., Gangopadhyay T. K., Chakraborty A. K., Dasgupta K., Bhattacharya D. K. Fibre Bragg gratings in structural health monitoring-Present status and applications // Sensors Actuators, A Phys. - 2008. - Vol. 147, no. 1. - P. 150-164.
19. Kablov E., Sivakov D., Gulaev I., Sorokin K., Fedotov M., Dianov E., Vasil’ev S., Medvedkov O. Primenenie opticeskogo volokna v kacestve datcikov deformacii v polimernyh kompozicionnyh materialah // Vse materialy. Enciklopediceskij spravocnik. - 2010. - No. 3, S. 10-15.
20. Lammens N., Luyckx G., Van Paepegem W., Degrieck J. Finite element prediction of resin pocket geometries around arbitrary inclusions in composites: Case study for an embedded optical fiber interrogator // Compos. Struct. - 2016. - Vol. 146. - P. 95-107.
21. Bhargava A., Shivakumar K., Emmanwori L. Stress concentration and failure in composite laminates embedded with fiber optic sensor // Collect. Tech. Pap. - AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf. - 2003. - Vol. 6. - P. 4128-4140
22. Shivakumar K., Bhargava A. Failure Mechanics of a Composite Laminate Embedded with a Fiber Optic Sensor // J. Compos. Mater. - 2005. - Vol. 39, no. 9. - P. 777-798.
23. Shivakumar K., Emmanwori L. Mechanics of failure of composite laminates with an embedded fiber optic sensor // J. Compos. Mater. - 2004. - Vol. 38, no. 8. - P. 669-680.
24. Korepanov V. V., Serovaev G. S., Yurlova N. A. Numerical Modelling of Layered Composite Materials with Embedded Optical Fiber Sensors // Solid State Phenom. - 2015. - Vol. 243. - P. 83-88.
25. Banea M. D., Da Silva L. F. M. Adhesively bonded joints in composite materials: An overview // Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. - 2009. - Vol. 223, no. 1. - P. 1-18.

Published

2017-12-31

Issue

Section

Articles

How to Cite

Kosheleva, N. A., & Serovaev, G. S. (2017). Stress-state modeling in the vicinity of an optical fiber embedded Into polymer composite material taking into account the structural features of the composite. Computational Continuum Mechanics, 10(4), 466-473. https://doi.org/10.7242/1999-6691/2017.10.4.38