The dynamic problem of thermoelectroelasticity for functionally graded layer

Authors

  • Aleksandr Ovanesovich Vatulyan Southern Federal University
  • Sergey Anatolievich Nesterov Southern Mathematical Institute

DOI:

https://doi.org/10.7242/1999-6691/2017.10.4.36

Keywords:

thermoelectroelasticity, weak setting, identification, rod, computational experiment

Abstract

A general formulation of the coefficient inverse thermoelasticity problem for an inhomogeneous body is presented. The inverse problem is to determine the material characteristics of a finite inhomogeneous thermoelectric body as a function of the coordinates. A weak formulation is formulated. To solve the inverse problem on the basis of a weak formulation in Laplace transforms and the linearization method, operator equations are obtained that relate the functions sought and measured in the experiment. As an example, we consider the problem for a thermoelectroelastic rod. The direct problem of thermoelectroelasticity for a rod after the Laplace transform is solved on the basis of reduction to the system of Fredholm integral equations of the second kind, construction of solutions in the form of rational functions relative to transformants, and finding the originals on the basis of the theory of residues. To solve the inverse thermoelasticity problem, an iterative process is constructed, at each stage of which there are corrections of the reconstructed characteristics by solving the Fredholm integral equations of the first kind. The effect of changing the material characteristics on the additional information needed to solve the inverse problem is investigated. Computational experiments were carried out to reconstruct the laws of distribution of inhomogeneity in the classes of power and exponential functions, most often used in the modeling of functional gradient materials. Recommendations are given on the choice of the most informative time ranges for the extraction of additional information. A series of computational experiments showed that the error in restoring the dimensionless characteristics does not exceed 5%.

Downloads

Download data is not yet available.

References

Mindlin R. D. On the equations of motion of piezoelectric crystals // Problems of continuum mechanics / Ed. by N.I. Muskilishivili. - Philadelphia: SIAM, 1961. - P. 282-290.
2. Mindlin R. D. Equations of high frequency, vibrations of thermopiezoelectric crystal plates // Int. J. Solid. Struct. - 1974. - Vol. 10, no 6. - P. 625-637.
3. Nowacki W. Some general theorems of thermopiezoelectricity // J. Therm. Stresses. - 1978. - Vol. 1, no. 2. - P. 171-182.
4. Vatul’an A.O, Kirutenko A.U., Nasedkin A.V. Ploskie volny i fundamental’nye resenia v linejnoj termoelektrouprugosti // PMTF. - 1996. - T. 37, No 5. - S.135-142.
5. Vatul’an A.O. Teplovoj udar po termoelektrouprugomu slou // Vestnik DGTU. - 2001. - T. 1(7), No 1. - S.82 -89.
6. Bassiouny E., Youssef H.M. Two-temperature generalized thermopiezoelasticity of finite rod subjected to different types of thermal loading // J. Therm. Stresses. - 2008. - Vol. 31, no. 3. - P. 233-245.
7. Bassiouny E., Youssef H.M. Thermo-elastic properties of thin ceramic layers subjected to thermal loadings // JOT. - 2013. - Vol. 1, no. 1. - P. 4-12.
8. Shen S., Kuang Z.-B. An active control model of laminated piezothermoelastic plate // Int. J. Solids Struct. - 1999. - Vol. 36, no. 13. - P. 1925-1947.
9. Wu X.-H., Shen Y.-P., Chen C. An exact solution for functionally graded piezothermoelastic cylindrical shell as sensor or actuators // Mater Lett. - 2003. - Vol. 57, no. 22-23. - P. 3532-3542.
10. Ying C., Zhefei S. Exact solutions of functionally gradient piezothermoelasic cantilevers and parameter identification // J. Intel. Mat. Syst. Str. - 2005. Vol. 16, no. 6. - P. 531-539.
11. Zhong Z., Shang E.T. Exact analysis of simply supported functionally graded piezothermoelectric plates // J. Intel. Mat. Syst. Str. - 2005. - Vol. 16, no. 7-8. - P. 643-651.
12. Ootao Y., Tanigawa Y. The transient piezothermoelastic problem of a thick functionally graded thermopiezoelectric strip due to nonuniform heat supply // Arch. Appl. Mech. - 2005. - Vol. 74, no. 7. - P. 449-465.
13. Ootao Y., Tanigawa Y. Transient piezothermoelastic analisys for a functionally graded thermopiezoelectrical hollow sphere // Compos. Struct. - 2007. - Vol. 81, no. 7. - P. 540-549.
14. Vatul’an A.O., Nesterov S.A. Dinamiceskaa zadaca termoelektrouprugosti dla funkcional’no-gradientnogo sloa // Vycisl. meh. splos. sred. - 2017. - T. 10, No 2. - S. 117-126.
15. Gonzaleza M.G., Sorichettic P.A., Ciocci Brazzanoa L., Santiagoa G.D. Electromechanical characterization of piezoelectric polymer thin films in a broad frequency range // Polym. Test. - 2014. - Vol. 37. - P. 163-169.
16. Vatul’an A.O, Solov’ev A.N. Pramye i obratnye zadaci dla odnorodnyh i neodnorodnyh uprugih i elektrouprugih tel. - Rostov-na-Donu: UFU, 2008. - 176 s.
17. Vatul’an A.O. K teorii obratnyh zadac v linejnoj mehanike deformiruemogo tela // PMM. - 2010. - T. 74, No 6. - S. 909-916.
18. Vatul’an A.O., Dudarev V.V. O rekonstrukcii neodnorodnyh svojstv p’ezoelektriceskih tel // Vycisl. meh. splos. sred. - 2012. T. 5, No 3. - S. 259-264.
19. Bogacev I.V., Vatul’an A.O., Avruan O.V. Identifikacia svojstv neodnorodnoj elektrouprugoj sredy // PMM. - 2012. - T. 76. No 5. - S. 860-866.
20. Vatul’an A.O., Nesterov S.A. Ob odnom sposobe identifikacii termouprugih harakteristik dla neodnorodnyh tel // IFZ. - 2014. - T. 87, No 1. - S. 217-224.
21. Nedin R., Nesterov S., Vatulyan A. On an inverse problem for inhomogeneous thermoelastic rod // Int. J. of Solid. Struct. - 2014. - Vol. 51(3). - P. 767-773.
22. R. Nedin, S. Nesterov, A. Vatulyan. Identification of thermal conductivity coefficient and volumetric heat capacity of functionally graded materials // Int. J. Heat Mass Transfer. - 2016. - Vol. 102. - P. 213-218.
23. Tihonov A.N., Goncarskij A.V., Stepanov V.V., Agola A.G. Cislennye metody resenia nekorrektnyh zadac. - M.: Nauka, 1990. - 230 s.

Published

2017-12-31

Issue

Section

Articles

How to Cite

Vatulyan, A. O., & Nesterov, S. A. (2017). The dynamic problem of thermoelectroelasticity for functionally graded layer. Computational Continuum Mechanics, 10(4), 445-455. https://doi.org/10.7242/1999-6691/2017.10.4.36