On exact nonstationary solutions of equations of vibrational convection

Authors

  • Dmitriy Anatolievich Bratsun Perm National Research Polytechnic University
  • Vladimir Aleksandrovich Vyatkin Perm National Research Polytechnic University
  • Ainaz Radikovich Mukhamatullin Perm State Humanitarian Pedagogical University

DOI:

https://doi.org/10.7242/1999-6691/2017.10.4.35

Keywords:

exact solutions of convection equations, finite-frequency vibrations, thermovibrational convection, chemoconvection

Abstract

In this paper, we consider a class of exact non-stationary solutions of the Boussinesq equations, which describe the motion of an inhomogeneous fluid in a vessel performing periodic linear vibrations of a finite frequency. The inhomogeneity of the medium implies the existence of the density gradient, which can occur due to different factors (external or internal). An important condition for obtaining an exact solution in the closed form is the orthogonality of the density gradient and the direction of vibrations, which should be maintained at any time moment during the vibration period. If this condition is fulfilled, then there exists a class of exact unsteady solutions describing the laminar flow of fluid in the direction of vibrations. In this case, the velocity profile can have a complicated dependence on the coordinates, which are transverse to the fluid motion. This functional dependence is determined by the character of the density inhomogeneity. Finally, the inertial field, varying in time, differently affects the laminar layers of various densities and defines the main physical mechanism of the fluid flow. The final result of the calculations also depends essentially on the return flow condition. As examples, the following problems of thermo- and chemovibrational convection have been considered: the flow of a viscous fluid in a plane layer heated from the side and performing periodic harmonic vibrations along the layer; the flow of a viscous heat-generating fluid in a plane layer under the action of periodic vibrations directed along the layer; the flow of a viscous fluid in a plane layer at the boundary of which a constant gradient of the reactant is assigned, the chemical reaction of the first order occurs, and the layer itself performs longitudinal periodic vibrations; the flow of a viscous heat-generating fluid filling a cylindrical channel that performs periodic oscillations in the axis direction. In each case, we present analytical expressions for fluid velocity, pressure, temperature, and reagent concentration. A general procedure for finding exact expressions for a given class of solutions is discussed.

Downloads

Download data is not yet available.

References

Lojcanskij L.G. Mehanika zidkosti i gaza. - M.: Nauka, 1978. - 736 s.
2. Gersuni G.Z., Zuhovickij E.M. Konvektivnaa ustojcivost’ neszimaemoj zidkosti. - M.: Nauka, 1972. - 392 s.
3. Gersuni G.Z. Ob ustojcivosti ploskogo konvektivnogo dvizenia zidkosti // ZTF. - 1953. - T. 3, No 10. - S. 1838-1844.
4. Batchelor G.K. Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures // Quart. Appl. Math. - 1954. - Vol. 12, no. 3. - P. 209-233.
5. Gersuni G.Z., Zuhovickij E.M., Nepomnasij A.A. Ustojcivost’ konvektivnyh tecenij. - M.: Nauka, 1989. - 320 s.
6. Birih R.V. O termokapillarnoj konvekcii v gorizontal’nom sloe zidkosti // PMTF. - 1966. - No 3. - S. 69-72.
7. Andreev V.K., Bekezanova V.B. Ustojcivost’ neizotermiceskih zidkostej (obzor) // PMTF. - 2013. - T. 54, No 2. - S. 3-20.
8. Puhnacev V.V. Teoretiko-gruppovaa priroda resenia Biriha i ego obobsenia // Simmetria i differencial’nye uravnenia: Trudy II Mezdunarodnoj konferencii, Krasnoarsk, 21-25 avgusta 2000 g. - Krasnoarsk, 2000.
9. Katkov V.L. Tocnye resenia nekotoryh zadac konvekcii // PMM. - 1968. - T. 32, No 3. - S. 11-18.
10. Andreev V.K. Resenie Biriha uravnenij konvekcii i nekotorye ego obobsenia: Preprint No1-10 / IVM SO RAN. - Krasnoarsk, 2010. - 68 s.
11. Ostroumov G.A. Svobodnaa konvekcia v usloviah vnutrennej zadaci. - Moskva-Leningrad: Gostehizdat, 1952. - 256 s.
12. Ovsannikov L.V. Gruppovoj analiz differencial’nyh uravnenij. - M.: Nauka, 1978. - 400 s.
13. Ovsannikov L.V. Gruppovye svojstva uravnenij nelinejnoj teploprovodnosti // DAN. - 1959. - T. 125, No 3. - S. 492-495.
14. Andreev V.K., Kapcov O.V., Puhnacev V.V., Rodionov A.A. Primenenie teoretiko-gruppovyh metodov v gidrodinamike. - Novosibirsk: Nauka, 1994. - 320 s.
15. Andreev V.K., Ryzkov I.I. Gruppovaa klassifikacia i tocnye resenia uravnenij termodiffuzii // Differenc. uravnenia. - 2005. - T. 41, No 4. - S. 508-517.
16. Aristov S.N., Prosvirakov E.U. Novyj klass tocnyh resenij uravnenij termodiffuzii // TOHT. - 2016. - T. 50, No 3. - S. 294-301.
17. Goncarova O.N. Tocnye resenia linearizovannyh uravnenij slaboszimaemoj zidkosti // PMTF. - 2005. - T. 46, No 2. - S. 52-63.
18. Aristov S.N., Svarc K.G. Vihrevye tecenia advektivnoj prirody vo vrasausemsa sloe zidkosti. - Perm’: Izd-vo PGU, 2006. - 154 s.
19. Gromeka I.S. K teorii dvizenia zidkosti v uzkih cilindriceskih trubkah // Ucen. zap. Kazan. un-ta. Otd. fiz.-mat. nauk. - 1882. - Kn. I. - C. 41-72.
20. Gersuni G.Z., Keller I.O., Smorodin B.L. O vibracionno-konvektivnoj neustojcivosti v nevesomosti ploskogo gorizontal’nogo sloa zidkosti pri konecnyh castotah vibracii // MZG. - 1996. - No 5. - s. 44-51.
21. Pesch W., Palaniappan D., Tao J., Busse F.H. Convection in heated fluid layers subjected to time-periodic horizontal accelerations // J. Fluid Mech. - 2008. - Vol. 596. - P. 313-332.
22. Smorodin B.L., Myznikova B.I., Keller I.O. Asymptotic laws of thermovibrational convection in a horizontal fluid layer // Microgravity Sci. Technol. - 2017. - Vol. 29, no. 1-2. - P. 19-28.
23. Bratsun D.A., Teplov V.S. On the stability of the pulsed convective flow with small heavy particles // Eur. Phys. J. A. - 2000. - Vol. 10. - P. 219-230.
24. Bratsun D.A.,Teplov V.S. Parametric excitation of a secondary flow in a vertical layer of a fluid in the presence of small solid particles //J.Appl.Mech.Techn.Phys. - 2001. - Vol.42, No.1. - P.42-48.
25. Bratsun D.A. Effect of unsteady forces on the stability of non-isothermal particulate flow under finite-frequency vibrations // Microgravity Sci. Technol. - 2009. - Vol. 21, no. 1. - P. 153-158.
26. Puhnacev V.V. Nestacionarnye analogi resenia Biriha // Izvestia AltGU. - 2011. - No 1-2. - S. 62-69.
27. Puhnacev V.V. Tocnye resenia uravnenij gidrodinamiki, postroennye na osnove casticno invariantnyh // PMTF. - 2003. - T. 44, No 3. - S. 18-25.
28. Aristov S.N., Prosvirakov E.U., Spevak L.F. Nestacionarnaa sloistaa teplovaa i koncentracionnaa konvekcia Marangoni vazkoj neszimaemoj zidkosti // Vycisl. meh. splos. sred. - 2015. - T. 8, No 4. - S. 445-455.
29. Andreev S.N., Gaponenko U.A., Goncarova O.N., Puhnacev V.V. Sovremennye matematiceskie modeli konvekcii. - M.: Fizmatlit, 2008. - 368 s.
30. Zuzgin A.V., Putin G.F. Ustojcivost’ pod"emno-opusknogo tecenia v vertikal’nom sloe zidkosti pod vozdejstviem vysokocastotnyh vibracij // Vibracionnye effekty v gidrodinamike. - Perm’: PGU, 1998. - Vyp. 1. - C. 130-141.

Published

2017-12-31

Issue

Section

Articles

How to Cite

Bratsun, D. A., Vyatkin, V. A., & Mukhamatullin, A. R. (2017). On exact nonstationary solutions of equations of vibrational convection. Computational Continuum Mechanics, 10(4), 433-444. https://doi.org/10.7242/1999-6691/2017.10.4.35