Simulation of primary atomization due to Kelvin-Helmholtz instability

Authors

  • Maxim Georgievich Kazimardanov Perm State University
  • Stanislav Victorovich Mingalev OJSC «Aviadvigatel»
  • Tatjana Petrovna Lubimova Perm State University
  • Leonid.Yurjevich Gomzikov OJSC «Aviadvigatel»

DOI:

https://doi.org/10.7242/1999-6691/2017.10.4.33

Keywords:

Kelvin-Helmholtz instability, volume of fluid method (VOF), 2D flow, atomization, Sauter mean diameter

Abstract

Application of a volume of fluid method to the atomization due to Kelvin-Helmholtz instability is studied. The aim of the work is to develop an approach for modeling the primary breakup using the volume of fluid method, to investigate the grid convergence and to choose the optimal size of grid cell, and to calculate the primary breakup of the film in the channel by high-speed airflow using the obtained approach. The dependences of the average values of the angle of attack, the velocity modulus and the Sauter mean droplet diameter on the longitudinal coordinate of the channel are obtained. The step-by-step averaging over the ensemble of droplets and over time allows us to get smooth coordinate dependences of the characteristics of the droplet ensemble. It has been found that there is no reason to decrease cell size in order to obtain an accurate description of fine droplets. The number of such droplets increases rapidly with decreasing cell size, but their contribution to the average characteristics of the droplet ensemble remains insignificant. Moreover, the Sauter mean diameter, which was found by the volume of fluid method, is close to the theoretical value of this quantity. The dependence of the Sauter mean diameter on the thickness of the liquid layer agrees qualitatively with the dependence found in the experiment.

Downloads

Download data is not yet available.

References

Luo H., Svendsen H.F. Theoretical model for drop and bubble breakup in turbulent dispersions // AIChE J. -1996. - Vol. 42, no. 5. - P. 1225-1233.
2. Lehr F., Millies M., Mewes D. Bubble-Size distributions and flow fields in bubble columns // AIChE J. - 2002. - Vol. 8, no. 11. - P. 2426-2443.
3. O’Rourke P.J., Amsden A.A., The TAB method for numerical calculation of spray droplet breakup // SAE Technical Paper. - 1987. - 872089.
4. Beale J.C., Reitz R.D. Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model // Atomization Spray. - 1999. - Vol. 9. - P. 623-650.
5. Menard T., Tanguy S., Berlemont A. Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet // Int. J. Multiphase Flow. - 2007. - Vol. 33, no. 5. - P. 510-524.
6. Berlemont A., Bouali Z., Cousin J., Desjonqueres P., Doring M., Menard T., Noel E. Simulation of liquid/gas interface break-up with a coupled Level Set/VOF/Ghost Fluid method // Proc. 7th Int. Conf. on Computational Fluid Dynamics (ICCFD7-2105), Big Island, Hawaii, July 9-13, 2012.
7. Desjardins O., McCaslin J., Owkes M., Brady P. Direct numerical and large-eddy simulation of primary atomization in complex geometries // Atomization Spray. - 2013. - Vol. 23, no. 11. - P. 1001-1048.
8. Mehravaran K. Direct simulations of primary atomization in moderate-speed diesel fuel injection // Int. J. Mater. Mech. Manuf. - 2013. - Vol. 1, no. 2. - P. 207-209.
9. Ling Y., Fuster D., Tryggvason G., ScardovelliR., Zaleski St. 3D DNS of spray formation in gas-assisted atomization // Proc. XXIV International Congress of Theoretical and Applied Mechanics, Montreal, Canada, 21-26, August, 2016.
10. Chaussonnet G., Riber E., Vermorel O., Cuenot B., Gepperth S., Koch R. Large Eddy Simulation of a prefilming airblast atomizer // Proc. 25th European Conference on Liquid Atomization and Spray Systems, Chania, Greece, 1-4 September, 2013.
11. Jeffreys H. On the formation of water waves by wind // P. Roy. Soc. Lond. A Mat. - 1925. - Vol. 107, no. 742. - P. 189-206.
12. Andritsos N., Hanratty T.J. Interfacial instabilities for horizontal gas-liquid flows in pipeline // Int. J. Multiphase Flow. - 1987. - Vol. 13, no. 5. - P. 583-603.
13. Tian Ch., Chen Y. Numerical simulation of Kelvin-Helmholtz instability: a two-dimensional parametrical study // The Astrophysical Journal. - 2016. - Vol. 824, no. 1.
14. Lee H.G., Kim J. Two-dimensional Kelvin-Helmholtz instabilities of multi-component fluids // Eur. J. Mech. B-Fluid. - 2015. - Vol. 49, Part A. - P. 77-88.
15. Woodmansee D.E., Hanratty Th.J. Mechanism for the removal of droplets from a liquid surface by a parallel air flow // Chem. Eng. Sci. - 1969. - Vol. 24, no. 2. - P. 299-307.
16. Raynal L. Instabilite et entrainement a l’interface d’une couche de melange liquide-gaz // PhD thesis. - Grenoble: Universite J. Fourier, 1997. - 231 p.
17. Jerome J.J.S., Marty S., Matas J.-Ph., Zaleski St., Hoepffner J. Vortices catapult droplets in atomization // Phys. Fluids. - 2013. - Vol. 25, no. 11.
18. Ebner J., Gerendas M., Schafer O., Wittig S. Droplet entrainment from a shear-driven liquid wall film in inclined ducts: experimental study and correlation comparison // Proc. ASME Turbo Expo 2001, New Orleans, Louisiana, USA, June 4-7, 2001. - Paper No. 2001-GT-0115.
19. Salanin V.A. Ejlerovy metody modelirovania potokov so svobodnoj poverhnost’u // Molodoj ucenyj. - 2016. - No 2(106). - S. 258-261.
20. Leonov A.A., Cudanov V.V., Aksenova A.E. Metody pramogo cislennogo modelirovania v dvuhfaznyh sredah // Trudy IBRAE RAN / Pod obs. red. cl.-kor. RAN L.A. Bol’sova. - M.: Nauka, 2013. - Vyp. 14. - 197 s.
21. Lubimov D.V., Lubimova T.P. Ob odnom metode skvoznogo sceta dla resenia zadac s deformiruemoj poverhnost’u razdela // Modelirovanie v mehanike. - 1990. - T. 4(21), No 1. - S. 136-140.
22. Brackbill J.U., Kothe D.B., Zemach C. A continuum method for modeling surface tension // J. Comput. Phys. - 1992. - Vol. 100, no. 2. - P. 335-354.
23. Senecal P.K., Schmidt D.P., Nouar I., Rutland C.J., Reitz R.D., Corradini M.L. Modeling high-speed viscous liquid sheet atomization // Int. J. Multiphas. Flow. - 1999. - Vol. 25, no. 6-7. - P. 1073-1097.
24. Dombrowski N., Hooper P.C. The effect of ambient density on drop formation in sprays // Chem. Eng. Sci. - 1962. - Vol. 17, no. 4. - P. 291-305.
25. Dombrowski N., Johns W.R. The aerodynamic instability and disintegration of viscous liquid sheets // Chem. Eng. Sci. - 1963. - Vol. 18, no. 3. - P. 203-214.
26. Strokac E.A., Borovik I.N. Cislennoe modelirovanie processa raspylivania kerosina centrobeznoj forsunkoj // Vestnik MGTU im. N.E. Baumana. Seria: Masinostroenie. - 2016. - No 3(108). - C. 37-54.
27. Mayer E. Theory of liquid atomization in high velocity gas streams // ARS Journal. - 1961. - Vol. 31, no. 12. - P. 1783-1785.
28. Weiss M.A., Worsham C.H. Atomization in high velocity airstreams // ARS Journal. - Vol. 29, no. 4. - P. 252-259.

Published

2017-12-31

Issue

Section

Articles

How to Cite

Kazimardanov, M. G., Mingalev, S. V., Lubimova, T. P., & Gomzikov, L. . (2017). Simulation of primary atomization due to Kelvin-Helmholtz instability. Computational Continuum Mechanics, 10(4), 416-425. https://doi.org/10.7242/1999-6691/2017.10.4.33