Natural vibrations of cylindrical shell partially resting on elastic foundation
DOI:
https://doi.org/10.7242/1999-6691/2017.10.4.32Keywords:
classical shell theory, cylindrical shell, Godunov’s orthogonal sweep method, natural vibrations, elastic Pasternak’s mediumAbstract
The paper presents the results of an investigation of the natural vibrations of circular cylindrical shells resting on an elastic foundation, which is described by the two-parameter Pasternak model. The elastic medium is inhomogeneous along the shell length, and the inhomogeneity is an alternation of areas with the presence or absence of a medium. The behavior of the shell is considered in the framework of the classical shell theory, which is based on the Kirchhoff-Lyav hypotheses. The corresponding geometrical and physical relations together with the equations of motion are reduced to the system of eight ordinary differential equations for new unknowns. The problem is solved by the Godunov orthogonal sweep method, and the differential equations are integrated using the Runge-Kutta method with fourth-order accuracy. The eigenfrequencies are calculated in the stepwise iterative procedure, followed by further refinement by a bisection method. A comparison of the obtained results with the known numerical-analytical solutions confirmed their validity. The numerical calculations made for cylindrical shells under various combinations of boundary conditions revealed the dependence of minimum vibration frequencies on the characteristics of elastic medium exhibiting different types of inhomogeniety. It is shown that a discontinuity in the smoothness of the curves is caused both by a change in the mode with a minimum frequency of oscillations and by the ratio of the size of the elastic foundation to the total length of the shell and its rigidity, as well as by the combination of boundary conditions specified at the ends of the thin-walled structure.
Downloads
References
Pasternak P.L. Osnovy novogo metoda rasceta fundamentov na uprugom osnovanii pri pomosi dvuh koefficientov posteli. - M.: Gosstrojizdat, 1954. - 56 c.
2. Vlasov V.Z., Leont’ev N.N. Balki, plity i obolocki na uprugom osnovanii. - M.: Fizmatgiz, 1960. - 491 s.
3. Gorbunov-Posadov M.I., Malikova T.A. Rascet konstrukcij na uprugom osnovanii. - M.: Strojizdat, 1973. - 627 s.
4. Paliwal D.N., Pandey R.K., Nath T. Free vibrations of circular cylindrical shell on Winkler and Pasternak foundations // Int. J. Pres. Ves. Pip. - 1996. - Vol. 69, no. 1. - P. 79-89.
5. Malekzadeh P., Farid M., Zahedinejad P., Karami G. Three-dimensional free vibration analysis of thick cylindrical shells resting on two-parameter elastic supports // J. Sound Vib. - 2008. - Vol. 313, no. 3-5. - P. 655-675.
6. Gheisari M., Molatefi H., Ahmadi S.S. Third order formulation for vibrating non-homogeneous cylindrical shells in elastic medium // J. Solid Mech. - 2011. - Vol. 3, no. 4. - P. 346-352.
7. Leonenko D.V. Svobodnye kolebania trehslojnyh cilindriceskih obolocek v uprugoj srede Pasternaka // Mehanika masin, mehanizmov i materialov. - 2013. - No 4(25). - S. 57-59.
8. Ye T., Jin G., Shi S., Ma X. Three-dimensional free vibration analysis of thick cylindrical shells with general end conditions and resting on elastic foundations // Int. J. Mech. Sci. - 2014. - Vol. 84. - P. 120-137.
9. Kuznecova E.L., Leonenko D.V., Starovojtov E.I. Sobstvennye kolebania trehslojnyh krugovyh cilindriceskih obolocek v uprugoj srede // MTT. - 2015. - No 3. - S. 152-160.
10. Khalifa M.A. Natural frequencies and mode shapes of variable thickness elastic cylindrical shells resting on a Pasternak foundation // J. Vib. Control. - 2016. - Vol. 22, no. 1. - P. 37-50.
11. Sofiyev A.H., Karaca Z., Zerin Z. Non-linear vibration of composite orthotropic cylindrical shells on the non-linear elastic foundations within the shear deformation theory // Compos. Struct. - 2017. - Vol. 159. - P. 53-62.
12. Sheng G.G., Wang X. Thermal vibration, buckling and dynamic stability of functionally graded cylindrical shells embedded in an elastic medium // J. Reinf. Plast. Comp. - 2008. - Vol. 27, no. 2. - P. 117-134.
13. Shah A.G., Mahmood T., Naeem M.N., Iqbal Z., Arshad S.H. Vibrations of functionally graded cylindrical shells based on elastic foundations // Acta Mech. - 2010. - Vol. 211, no. 3-4. - P. 293-307.
14. Najafov A.M., Sofiyev A.H., Kuruoglu N. Torsional vibration and stability of functionally graded orthotropic cylindrical shells on elastic foundations // Meccanica. - 2013. - Vol. 48, no. 4. - P. 829-840.
15. Mohammadimehr M., Moradi M., Loghman A. Influence of the elastic foundation on the free vibration and buckling of thin-walled piezoelectric-based FGM cylindrical shells under combined loading // J. Solid Mech. - 2014. - Vol. 6, no. 4. - P. 347-365.
16. Kamarian S., Sadighi M., Shakeri M., Yas M.H. Free vibration response of sandwich cylindrical shells with functionally graded material face sheets resting on Pasternak foundation // J. Sandwich Struct. Mater. - 2014. - Vol. 16, no. 5. - P. 511-533.
17. Bahadori R., Najafizadeh M.M. Free vibration analysis of two-dimensional functionally graded axisymmetric cylindrical shell on Winkler-Pasternak elastic foundation by first-order shear deformation theory and using Navier-differential quadrature solution methods // Appl. Math. Model. - 2015. - Vol. 39, no. 16. - P. 4877-4894.
18. Sofiyev A.H., Keskin S.N., Sofiyev Ali H. Effects of elastic foundation on the vibration of laminated non-homogeneous orthotropic circular cylindrical shells // Shock Vib. - 2004. - Vol. 11, no. 2. - P. 89-101.
19. Sheng G.G., Wang X., Fu G., Hu H. The nonlinear vibrations of functionally graded cylindrical shells surrounded by an elastic foundation // Nonlinear Dynam. - 2014. - Vol. 78, no. 2. - P. 1421-1434.
20. Sofiyev A.H. Large amplitude vibration of FGM orthotropic cylindrical shells interacting with the nonlinear Winkler elastic foundation // Compos. Part B-Eng. - 2016. - Vol. 98. - P. 141-150.
21. Sofiyev A.H., Hui D., Haciyev V.C., Erdem H., Yuan G.Q., Schnack E., Guldal V. The nonlinear vibration of orthotropic functionally graded cylindrical shells surrounded by an elastic foundation within first order shear deformation theory // Compos. Part B-Eng. - 2017. - Vol. 116. - P. 170-185.
22. Amabili M., Dalpiaz G. Free vibrations of cylindrical shells with non-axisymmetric mass distribution on elastic bed // Meccanica. - 1997. - Vol. 32, no. 1. - P. 71-84.
23. Amabili M., Garziera R. Vibrations of circular cylindrical shells with non-uniform constraints, elastic bed and added mass; Part I: empty and fluid-filled shells // J. Fluids Struct. - 2000. - Vol. 14, no. 5. - P. 669-690.
24. Gunawan H., Mikami T., Kanie S., Sato M. Finite element analysis of cylindrical shells partially buried in elastic foundations // Comput. Struct. - 2005. - Vol. 83, no. 21-22. - P. 1730-1741.
25. Gunawan H., Mikami T., Kanie S., Sato M. Free vibration characteristics of cylindrical shells partially buried in elastic foundations // J. Sound Vib. - 2006. - Vol. 290, no. 3-5. - P. 785-793.
26. Bakhtiari-Nejad F., Mousavi Bideleh S.M. Nonlinear free vibration analysis of prestressed circular cylindrical shells on the Winkler/Pasternak foundation // Thin Wall. Struct. - 2012. - Vol. 53. - P. 26-39.
27. Kim Y.-W. Free vibration analysis of FGM cylindrical shell partially resting on Pasternak elastic foundation with an oblique edge // Compos. Part B-Eng. - 2015. - Vol. 70. - P. 263-276.
28. Tan B.H., Lucey A.D., Howell R.M. Aero-/hydro-elastic stability of flexible panels: Prediction and control using localised spring support // J. Sound Vib. - 2013. - Vol. 332, no. 26. - P. 7033-7054.
29. Karmisin A.V., Laskovec V.A., Macenkov V.I., Frolov A.N. Statika i dinamika tonkostennyh obolocecnyh konstrukcij. - M.: Masinostroenie, 1975. - 376 s.
30. Godunov S.K. O cislennom resenii kraevyh zadac dla sistem linejnyh obyknovennyh differencial’nyh uravnenij // Uspehi matematiceskih nauk. - 1961. - T. 16, No 3. - S. 171-174.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.