Flutter of clamped orthotropic rectangular plate
DOI:
https://doi.org/10.7242/1999-6691/2017.10.4.28Keywords:
rectangular plate, flutter, Bubnov-Galerkin method, natural modesAbstract
A new approach for dynamic stability analysis of rectangular orthotropic plates is presented. In particular, in the approximation of the theory of planar sections the problem of the flutter of a panel in a supersonic gas flow is reduced to a boundary value problem for nonsymmetric differential operator. To improve standard technique of the Bubnov-Galerkin method, it is proposed to use new analytical representations of the eigenmodes of vibrations of a rectangular orthotropic plate in a vacuum as the basis functions of this method. According to this approach, the boundary value problem is essentially reduced to a homogeneous infinite system of linear algebraic equations. By using the asymptotic analysis and theory of regular infinite systems of linear algebraic equations, the effective and accurate algorithm for constructing the mode shapes in vacuum is developed. So, both the algorithm for constructing basis functions and the algorithm for determining the critical value of the velocity parameter are presented in this paper. The convergence of the Bubnov-Galerkin method is studied numerically for different problem parameters. The results of numerical modeling show that good convergence of the method can be achieved with first 16 basis functions when the values of in-plane forces and elastic constants vary. An analogous convergence of the method is also observed for an elongated plate. The computational efficiency of the method is illustrated by examples.
Downloads
References
Bolotin V.V. Nekonservativnye zadaci teorii uprugoj ustojcivosti. - M.: Fizmatgiz, 1961. - 340 s.
2. Vol’mir A.S. Ustojcivost’ deformiruemyh sistem. - M.: Nauka, 1967. - 984 s.
3. Kijko I.A, Algazin S.D. Flatter plastin i obolocek. - M.: Nauka, 2006. - 248 s.
4. Belubekan M.V., Martirosan S.R. Ob odnoj zadace dinamiceskoj ustojcivosti pramougol’noj plastiny v sverhzvukovom potoke gaza // Doklady NAN RA. - 2014. - T. 114, No 3. - S. 213-221.
5. Selezov I.T. O vzaimodejstvii uprugoj plastiny s potokom szimaemogo gaza // Aviacionno-kosmiceskaa tehnika i tehnologia. - 2012. - No 5(92). - S. 71-74.
6. Vedeneev V.V. Cislennoe issledovanie sverhzvukovogo flattera plastiny s ispol’zovaniem tocnoj aerodinamiceskoj teorii // MZG. - 2009. - No 2. - S. 169-178.
7. Vedeneev V.V., Guvernyuk S.V., Zubkov A.F., Kolotnikov M.E. Experimental observation of single mode panel flutter in supersonic gas flow // J. Fluid. Struct. - 2010. - Vol. 26, no. 5. - P. 764-779.
8. Kandidov V.P., Cesnokov S.S. Metod konecnyh elementov v zadacah flattera treugol’nyh i trapecievidnyh plastin // Ucenye zapiski CAGI. - 1977. - T. VIII, No 2. - S. 137-141.
9. Nguen Van Cyong. Vlianie poperecnoj nagruzki na sverhzvukovoj flatter zasemlennoj pramougol’noj plastinki // Izvestia TulGU. Estestvennye nauki. - 2014. - No 3. - S. 98-102.
10. Zafer K., Zahit M. Flutter analysis of a laminated composite plate with temperature dependent material properties // Int. J. Aeronautics Aerospace Res. - 2016. - Vol. 3, no. 3. - P. 106-114.
11. Dowell E.H., Ventres C.S. Comparison of theory and experiment for nonlinear flutter of loaded plates // AIAA J. - 1970. - Vol. 8, no. 11. - P. 2022-2030.
12. Fung Y.C. Some recent contributions to panel flutter research // AIAA J. - Vol. 1, no. 4. - P. 898-909.
13. Dowell E.H. Panel flutter: A review of the aeroelastic stability of plates and shells // AIAA J. - 1970. - Vol. 8, no. 3. - P. 385-399.
14. Dowell E.H., Voss H.M. Theoretical and experimental panel flutter studies in the Mach number range 1.0 to 5.0 // AIAA J. - 1965. - Vol. 3, no. 12. - P. 2292-2304.
15. Xue D.Y., Mei C. Finite element nonlinear panel flutter with arbitrary temperatures in supersonic flow // AIAA J. - 1993. - Vol. 31, no. 1. - P. 154-162.
16. Algazin S.D., Kijko I.A. Cislennoe issledovanie flattera pramougol’noj plastiny // PMTF. - 2003. - T. 44, No 4. - S. 35-42.
17. Kudravcev B.U. Flatter plastiny peremennoj tolsiny // Izvestia MGTU MAMI. - 2012. - No 1. - S. 249-255.
18. Valaev V.I. Ob opredelenii granicy panel’nogo flattera vertikal’noj stenki toplivnogo baka metodom zadannyh form // Ucenye zapiski CAGI. - 1983. - T. XIV, No 5. - S. 114-118.
19. Papkov S.O., Banerjee J.R. A new method for free vibration and bucking analysis of rectangular orthotropic plates // J. Sound Vib. - 2015. - Vol. 339. - P. 342-358.
20. Kantorovic L.V., Krylov B.I. Priblizennye metody vyssego analiza. - M.-L.: Fizmatgiz, 1962. - 708 s.
21. Papkov S.O. Obobsenie zakona asimptoticeskih vyrazenij Koalovica na slucaj neotricatel’noj beskonecnoj matricy // Dinamiceskie sistemy. - 2011. - T. 1, No 2(29). - S. 255-267.
22. Movcan A.A. Ob ustojcivosti panelej, dvizusihsa v gaze // PMM. - 1957. - T. 21, No 2. - S. 231-243.
23. Prakash T., Ganapathi M. Supersonic flutter characteristics of functionally graded flat panels including thermal effects // Compos. Struct. - 2006. - Vol. 72, no. 1. - P. 10-18.
24. Bismarck-Nasr M.N. Finite element analysis of aeroelasticity of plates and shells // Appl. Mech. Rev. - 1992. - Vol. 42, no. 12. - P. 461-482.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.