Numerical calculation and experimental verification of the fictitious angular velocity for transient temperature impact on the fiber-optic gyroscope coil
DOI:
https://doi.org/10.7242/1999-6691/2017.10.3.24Keywords:
fiber-optic gyroscope, fiber coil, transient thermal effects, temperature velocity, strain rate, functional of fictitious angular velocity, thermal driftAbstract
Numerical simulation and experimental investigation of the effect of two types of quadrupole winding of fiber coil on the fictitious angular velocity of a fiber-optic gyroscope under transient temperature conditions are carried out. The coil is formed by winding optical fiber precovered with two protective-hardening layers on the cylindrical surface and its further fixation by compound. For experimental verification of the fictitious angular velocity, a special device was made, in which the fiber coil was held by rubber gaskets used to maximally exclude the transfer of mechanical loads from the body parts to the coil. A functional for the fictitious angular velocity is represented as a function of temperature and elastic strain rate in the fiber core. In the software ANSYS, a two-dimensional axisymmetric finite-element analog of a structurally inhomogeneous coil in the device is modeled. To verify the elastic strains under uniform thermal actions, the problem of stationary thermoelasticity was solved. With the Brillouin optical time domain analyizer, Brillouin frequencies shifts at two temperatures were established, and the distribution of strains was obtained. A comparison of the calculated and experimental strains made it possible to refine the Poisson's ratio of a weakly compressible primary coating. The solution of the transient thermal problem and temperature sensor readings allowed us to establish the heat-conductivity coefficient between the device and the moving air in the heat chamber. As an impact, we considered the heating of the environment at a rate of 1 °C/min, followed by a steady-state output. To find the temperature and strain fields for the functional of fictitious angular velocity, the unbound quasistationary thermoelasticity problem was solved. Tests were carried out with two types of winding of the coil. The experimental results showed satisfactory agreement with the calculated data.
Downloads
References
Seremet’ev A.G. Volokonnyj opticeskij giroskop. - M.: Radio i svaz’, 1987. - 152 s.
2. Lefevre H. C. The Fiber-Optic Gyroscope. - Boston: Artech House, 2014. - 343 p.
3. Okosi T., Okamoto K. i dr. Volokonno-opticeskie datciki. - Leningrad: Energoatomizdat, 1991. - 256 s.
4. Sagnac G. The demonstration of the luminiferous aether by an interferometer in uniform rotation // Comptes Rendus. - 1913. - Vol. 157. - P. 708-710.
5. Sagnac G. On the proof for the existence of a luminiferous aether using a rotating interferometer experiment // Comptes Rendus. - 1913. - Vol. 157. - P. 1410-1413.
6. Korkisko U.N., Fedorov V.A., Priluckij V.E., Ponomarev V.G., Morev I.V., Skripnikov S.F. i dr. Besplatformennye inercial’nye navigacionnye sistemy na osnove volokonno-opticeskih giroskopov // Giroskopia i navigacia. - 2014. - No 1(84). - S. 14-25. DOI
7. Vahrameev E.I., Galagin K.S., Osivalov M.A., Savin M.A. Metodika cislennogo prognozirovania i korrekcii teplovogo drejfa volokonno-opticeskogo giroskopa // Izv. vuzov. Priborostroenie. - 2017. - T. 60, No 1. - S. 32-38. DOI
8. Antonova M.V., Matveev V.A. Model’ pogresnosti volokonno-opticeskogo giroskopa pri vozdejstvii teplovyh i magnitnyh polej // Vestnik MGTU im. N.E. Baumana. Seria: Priborostroenie. - 2014. - No 3. - S. 73-80.
9. Wang G., Wang Q., Zhao B., Wang Z. Compensation method for temperature error of fiber optical gyroscope based on relevance vector machine // Appl. Optics. - 2016. - Vol. 55, no. 5. - P. 1061-1066. DOI
10. Zhang Y., Guo Y., Li C., Wang Y., Wang Z. A new open-loop fiber optic gyro error compensation method based on angular velocity error modeling // Sensors. - 2015. - Vol. 15, no. 3. - P. 4899-4912. DOI
11. Dranicyna E.V., Egorov D.A., Untilov A.A., Dejneka G.B., Sarkov I.A., Dejneka I.G. Snizenie vliania izmenenia temperatury na vyhodnoj signal volokonno-opticeskogo giroskopa // Giroskopia i navigacia. - 2012. - No 4(79). - S. 10-20. DOI
12. Dzasitov V.E., Pankratov V.M., Golikov A.V., Nikolaev S.G., Kolevatov A.P., Plotnikov A.D., Koffer K.V. Ierarhiceskie teplovye modeli besplatformennoj inercial’noj navigacionnoj sistemy na volokonno-opticeskih giroskopah // Giroskopia i navigacia. - 2013. - No 1(80). - S. 49-63. DOI
13. Gromov D.S., Sarkov A.V. Teplovye rezimy giroskopiceskih priborov na baze volokonno-opticeskih giroskopov // Izv. vuzov. Priborostroenie. - 2013. - T. 56, No 1. - S. 62-67.
14. Golikov A.V., Pankratov V.M., Pankratova E.V. Primenenie passivnyh sposobov umen’senia temperaturnyh perepadov v volokonno-opticeskom giroskope na osnove ispol’zovania nanomaterialov // Giroskopia i navigacia. - 2016. - No 2(93). - S. 33-40. DOI
15. Kurbatov A.M., Kurbatov R.A. Temperaturnye harakteristiki cuvstvitel’nyh katusek volokonno-opticeskogo giroskopa // Radiotehnika i elektronika. - 2013. - T. 58, No 7. - S. 735-742. DOI
16. Li X., Ling W., He K., Xu Z., Du S. A thermal performance analysis and comparison of fiber coils with the D-CYL winding and QAD winding methods // Sensors. - 2016. - Vol. 16, no. 3. - P. 900. DOI
17. Ling W., Li X., Yang H., Liu P., Xu Z., Wei Y. Reduction of the Shupe effect in interferometric fiber optic gyroscopes: The double cylinder-wound coil // Opt. Commun. - 2016. - Vol. 370. - P. 62-67. DOI
18. Mohr F. Thermooptically induced bias drift in fiber optical Sagnac interferometers // J. Lightwave Technol. - 1996. - Vol. 14, no. 1. - P. 27-41. DOI
19. Shupe D.M. Thermally induced nonreciprocity in the fiber-optic interferometer // Appl. Optics. - 1980. - Vol. 19, no. 5. - P. 654-655. DOI
20. http://www.nufern.com/services/coilwindings (data obrasenia: 10.09.2017).
21. Trufanov A.N., Smetannikov O.Y., Trufanov N.A. Numerical analysis of residual stresses in preform of stress applying part for PANDA-type polarization maintaining optical fibers // Opt. Fiber Technol. - 2010. - Vol. 16, no. 3. - P. 156-161. DOI
22. Hocker G.B. Fiber-optic sensing of pressure and temperature // Appl. Optics. - 1979. - Vol. 18, no. 9. - P. 1445-1448. DOI
23. Mohr F., Schadt F. Bias error in fiber optic gyroscopes due to elastooptic interactions in the sensor fiber // EWOFS, Spain, SPIE. - 2004. - Vol. 5502. - P. 410-413.
24. Hocker G.B. Fiber optic acoustic sensors with composite structure: an analysis // Appl. Optics. - 1979. - Vol. 18, no. 21. - P. 3679-3683. DOI
25. Butter C.D., Hocker G.B. Fiber optics strain gauge // Appl. Optics. - 1978. - Vol. 17, no. 18. - P. 2867-2869. DOI
26. Dianov E.M., Mashinsky V.M. Germania-based core optical fibers // J. Lightwave Technol. - 2005. - Vol. 23, no. 11. - P. 3500-3508. DOI
27. Fleming J.W. Dispersion in GeO2-SiO2 glasses // Appl. Optics. - 1984. - Vol. 23, no. 24. - P. 4486-4493. DOI
28. Novackij V. Voprosy termouprugosti. - M.: Izd-vo AN SSSR, 1962. - 364 s.
29. Agraval G. Nelinejnaa volokonnaa optika. - M.: Mir, 1996. - 323 c.
30. Besprozvannyh V.G., Krivoseev A.I., Kel’ O.L. Issledovanie vliania temperaturnogo faktora na sostoanie kontura volokonno-opticeskogo giroskopa metodom brilluenovskoj reflektometrii // Prikladnaa fotonika. - 2015. - T. 2, No 4. - S. 329-341.
31. Minakuchi S., Sanada T., Takeda N., Mitani S., Mizutani T., Sasaki Y., Shinozaki K. Thermal strain in lightweight composite fiber-optic gyroscope for space application // J. Lightwave Technol. - 2014. - Vol. 33, no. 12. - P. 2658-2662. DOI
32. Moser F., Lienhart W., Woschitz H., Schuller H. Long-term monitoring of reinforced earth structures using distributed fiber optic sensing // J. Civil Struct. Health Monit. - 2016. - Vol. 6, no. 3. - P. 321-327. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.