Сomputer simulation of selective laser melting of fine-grained metallic powders
DOI:
https://doi.org/10.7242/1999-6691/2017.10.3.23Keywords:
selective laser melting, pulse laser processing, numerical simulation, approximation of a continuous medium, finite element method, governing parametersAbstract
A mathematical model of selective laser melting (SLM) of fine-grained metallic powders subjected to pulse laser annealing has been developed. The powder bed is considered in approximation of a continuous medium, where its effective thermophysical properties depend on local porosity. The model allows calculation of the unsteady distributions of temperature, specific enthalpy, local porosity, morphology and thickness of the track (layer) under study. In this paper, all stages of problem solving are described, including its mathematical formulation and numerical implementation. An important feature of the finite element model is the dependence of basic functions on the variable which characterizes the shrinkage of the powder bed. Thus, the finite element mesh requires regular control of quality and dynamic remeshing. Validation of the model is done through qualitative comparison with the SLM experiments performed at similar regimes. The effect of peak power density, pulse energy, and pulse duration on the quality of the track is studied to reveal governing parameters of SLM using Fe powder as a reference system. It is shown that an increase in pulse energy with increasing power density and pulse duration leads to better efficiency and quality of layer cohesion. At the same time, this positive effect decays at some critical parameters. This happens due to powder burning and intensifying of heat transfer to the substrate. It was shown that, at fixed pulse energy and effective beam radius, variation of power density and pulse duration keeps the roughness on the lateral faces of a 3D element.
Downloads
References
Gibson A., Rozen D., Staker B. Tehnologia additivnogo proizvodstva. - M.: Tehnosfera, 2016. - 656 s.
2. Kablov E.N. Additivnye tehnologii - dominanta nacional’noj tehnologiceskoj iniciativy // Intellekt i tehnologii. - 2015. - No 2(11). - S. 52-55.
3. Siskovskij I.V. Osnovy additivnyh tehnologij vysokogo razresenia. - SPb.: Piter, 2016. - 400 s.
4. Olakanmi E.O., Cochrane R.F., Dalgarno K.W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties // Prog. Mater. Sci. - 2015. - Vol. 74. - P. 401-477. DOI
5. Demir A.G., Colombo P., Previtali B. From pulsed to continuous wave emission in SLM with contemporary fiber laser sources: effect of temporal and spatial pulse overlap in part quality // Int. J. Adv. Manuf. Technol. - 2017. - P. 1-14. DOI
6. Regenfuss P., Streek A., Hartwig L., Klotzer S., Brabant Th., Horn M., Ebert R., Exner H. Principles of laser micro sintering // Rapid Prototyp. J. - 2007. - Vol. 13, no. 4. - P. 204-212. DOI
7. Demir A.G., Previtali B. Additive manufacturing of cardiovascular CoCr stents by selective laser melting // Mater. Design. - 2017. - Vol. 119. - P. 338-350. DOI
8. Kharanzhevskiy E., Ipatov A., Nikolaeva I., Zakirova R. Short-pulse laser sintering of multilayer hard metal coatings: structure and wear behavior // Lasers in Manufacturing and Materials Processing. - 2015. - Vol. 2, no. 2. - P. 91-102. DOI
9. Kruth J.P., Froyen L., Van Vaerenbergh J., Mercelis P., Rombouts M., Lauwers B. Selective laser melting of iron-based powder // J. Mater. Process. Tech. - 2004. - Vol. 149, no. 1-3. - P. 616-622. DOI
10. King W.E., Anderson A.T., Ferencz R.M., Hodge N.E., Kamath C., Khairallah S.A., Rubenchik A.M. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges // Applied Physics Reviews. - 2015. - Vol. 2, no. 4. - 041304. DOI
11. Yap C.Y., Chua C.K., Dong Z.L., Liu Z.H., Zhang D.Q., Loh L.E., Sing S.L. Review of selective laser melting: Materials and applications // Applied Physics Reviews. - 2015. - Vol. 2, no. 4. - 041101. DOI
12. Kumar S. Selective laser sintering: A qualitative and objective approach // JOM. - 2003. - Vol. 55, no. 10. - P. 43-47. DOI
13. Gusarov A.V., Yadroitsev I., Bertrand Ph., Smurov I. Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting // J. Heat Transfer. - 2009. - Vol. 131, no. 7. - 072101. DOI
14. Oschmann T., Schiemann M., Kruggel-Emden H. Development and verification of a resolved 3D inner particle heat transfer model for the Discrete Element Method (DEM) // Powder Technol. - 2016. - Vol. 291. - P. 392-407. DOI
15. Dong L., Makradi A., Ahzi S., Remond Y. Three-dimensional transient finite element analysis of the selective laser sintering process // J. Mater. Process. Tech. - 2009. - Vol. 209, no. 2. - P. 700-706. DOI
16. Hodge N.E., Ferencz R.M., Solberg J.M. Implementation of a thermomechanical model for the simulation of selective laser melting // Comput. Mech. - 2014. - Vol. 54, no. 1. - P. 33-51. DOI
17. Prilous B.I. O vvedenii ponatia predstavitel’nogo ob"emnogo elementa v teoriu strukturirovannogo kontinuuma // Interekspo Geo-Sibir’. - 2013. - T. 2, No 2. - S. 115-120.
18. Zajcev A.V., Lukin A.V., Taskinov A.A., Trefilov N.V. Clucajnye struktury dvuhfaznyh kompozitov: sintez, zakonomernosti, novaa ocenka harakternyh razmerov predstavitel’nyh ob"emov // Vestnik PGTU. Matematiceskoe modelirovanie sistem i processov. - 2004. - No 12. - C. 30-44.
19. Trusov P.V., Volegov P.S., Anc A.U. Dvuhurovnevye modeli polikristallov: o nezavisimosti obraza processa nagruzenia predstavitel’nogo makroob"ema // Fiz. mezomeh. - 2013. - T. 16, No 6. - S. 33-41.
20. Ankudinov V.E., Krivilev M.D. Teoreticeskij analiz zavisimosti teplofiziceskih harakteristik ot poristosti // Vestnik Udmurtskogo universiteta. Seria Fizika i Himia. - 2012. - No 4. - S. 3-8.
21. Ankudinov V.E. Modelirovanie teploperenosa v poristyh sredah s neodnorodnym raspredeleniem por // Matematiceskoe modelirovanie v estestvennyh naukah, Materialy XXIII Vserossijskoj skoly-konferencii molodyh ucenyh i studentov. - PNIPU, 2014. - S. 23-26.
22. Ivensen V.A. Kinetika uplotnenia metalliceskih poroskov pri spekanii. - M.: Metallurgia, 1971. - 265 s.
23. Skorohod V.V. Reologiceskie osnovy teorii spekania. - Kiev: Naukova dumka, 1972. - 152 s.
24. German R.M. Liquid phase sintering. - NY: Plenum Press, 1985. - 236 p.
25. Kruth J.-P., Levy G., Klocke F., Childs T.H.C. Consolidation phenomena in laser and powder-bed based layered manufacturing // CIRP Annals - Manufacturing Technology. - 2007. - Vol. 56, no. 2. - P. 730-759. DOI
26. Bird R., Stewart W.E., Lightfoot E.N. Transport phenomena - Wiley, 2007. - 905 p.
27. Grigor’anc A.G., Siganov I.N., Misurov A.I. Tehnologiceskie processy lazernoj obrabotki: Uceb. posobie. - M.: Izd-vo MGTU im. N.E. Baumana, 2006. - 664 s.
28. Ivanova A.M., Kotova S.P., Kuprianov N.L., Petrov A.L., Tarasova E.U., Siskovskij I.V. Fiziceskie osobennosti selektivnogo lazernogo spekania poroskovyh metall-polimernyh kompozicij // Kvantovaa elektronika. - 1998. - T. 25(5). - S. 433-438. DOI
29. Gusarov A.V., Kruth J.-P. Modelling of radiation transfer in metallic powders at laser treatment // Int. J. Heat Mass Transfer. - 2005. - Vol. 48, no. 16. - P. 3423-3434. DOI
30. Kostenkov S.N., Haranzevskij E.V., Krivilev M.D. Metod opredelenia harakteristik vzaimodejstvia lazernogo izlucenia s nanokompozitnymi poroskovymi materialami // FMM. - 2012. - T. 113, No 1. - C. 98-103. DOI
31. Borisov V.T. Teoria dvuhfaznoj zony metalliceskogo slitka. - M.: Metallurgia. - 1987. - 224 s.
32. Krivilev M.D., Haranzevskij E.V., Gordeev G.A., Ankudinov V.E. Upravlenie lazernym spekaniem metalliceskih poroskovyh smesej // Upravlenie bol’simi sistemami. - 2010. - No 31. - S. 299-322.
33. Gordeev G.A., Ankudinov V.E., Krivilyov M.D., Kharanzhevskiy E.V. Optimization of processing parameters in laser sintering of metallic powders // IOP Conf. Series: Materials Science and Engineering. - 2012. - Vol. 27. - 012079. DOI
34. Gordeev G.A., Krivilev M.D., Ankudinov V.E. Cislennoe modelirovanie lazernoj obrabotki metalliceskih poroskovyh materialov metodom konecnyh elementov // Vestnik Udmurtskogo universiteta. Seria Fizika i Himia. - 2014. - No 3. - C. 15-22.
35. Krivilyov M.D., Mesarovic S.Dj., Sekulic D.P. Phase-field model of interface migration and powder consolidation in additive manufacturing of metals // J. Mater. Sci. - 2017. - Vol. 52, no. 8. - P. 4155-4163. DOI
36. Zhang Y., Faghri A. Melting of a subcooled mixed powder bed with constant heat flux heating // Int. J. Heat Mass Transfer. - 1999. - Vol. 42, no. 5. - P. 775-788. DOI
37. Zhang Y., Faghri A., Buckley C.W., Bergman T.L. Three-dimensional sintering of two-component metal powders with stationary and moving laser beams // J. Heat Transfer. - 2000. - Vol. 122, no. 1. - P. 150-158. DOI
38. Williams J.D., Deckard C.R. Advances in modeling the effects of selected parameters on the SLS process // Rapid Prototyping Journal. - 1998. - Vol. 4, no. 2. - P. 90-100. DOI
39. Kaviany M. Principles of heat transfer in porous media. - Springer New York, 1995. - 726 p. DOI
40. Desai P.D. Thermodynamic properties of iron and silicon // J. Phys. Chem. Ref. Data. - 1986. - Vol. 15, no. 3. - P. 967-983. DOI
41. Shao T.M., Lin X.C., Zhou M. Absorption of some powder materials to YAG laser // Science in China (Series A). - 2001. - Vol. 44. - P. 489-494.
42. Zenkevic O.K. Metod konecnyh elementov: ot intuicii k obsnosti // Mehanika. - 1970. - No 6. - S. 90-104.
43. Segerlind L. Primenenie metoda konecnyh elementov. - M.: Mir, 1979. - 392 c.
44. COMSOL Multiphysics Reference Guide. - COMSOL AB, v4.3, 2012. - 702 p.
45. Rykalin N.N., Uglov A.A., Zuev I.V., Kokora A.N. Lazernaa i elektronno-lucevaa obrabotka materialov: Spravocnik. - M.: Masinostroenie, 1985. - 496 s.
46. Thijs L., Kempen K., Kruth J.-P., Van Humbeek J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder // Acta Mater. - 2013. - Vol. 61, no. 5. - P. 1809-1819. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.