A refined model of elastic-plastic bending deformation of flexible reinforced shallow shells based on explicit “cross” scheme
DOI:
https://doi.org/10.7242/1999-6691/2017.10.3.22Keywords:
shallow shells, reinforced structures, elastic-plastic deformation, geometric nonlinearity, Reddy theory, refined theory of bending, dynamic response, cross-type schemeAbstract
An initial-boundary value problem is formulated for elastoplastic deformation of flexible shallow shells, cross reinforced by equidistant surfaces. The mechanical behavior of the component materials of the composition of curved panels is governed by the Prandtl-Reuss-Hill equations for an elastoplastic medium. The geometric nonlinearity of the problem is considered in the Karman approximation. The resulting governing equations and the corresponding initial and boundary conditions in the generalized kinematic variables allow one to calculate with different accuracy the stress-strain state in the components of the composition of flexible shallow shells and plates, taking into account their weakened resistance to the transverse shear. The relations corresponding to the traditional non-classical Reddy theory are obtained in the first approximation from the equations, initial and boundary conditions. The numerical integration of the initial-boundary value problem is carried out on the basis of the method of steps in time. The central finite differences are used to approximate derivatives with respect to time. On the basis of this approximation the explicit numerical “cross” scheme is constructed in the case of impact loads of explosive type. The properties of elastoplastic dynamic behavior is investigated for the reinforced shallow spherical shell of annular form in plan, with a perfectly rigid inner insert, also for the cylindrical panels of rectangular elongated shape in plan of different thickness under the action of the front load generated by the air blast. Shallow shells are rationally reinforced in the directions of principal stresses and strains and at the supported edges they are rigidly clamped. It is shown that in some cases the Reddy theory is absolutely inadmissible to produce adequate results of calculations of the elastic-plastic deformable composite shallow shells, even with a relatively small thickness. It is demonstrated that, due to the geometrical and physical nonlinearity of the investigated problem, the dynamic behavior of reinforced curved panels significantly depends on the fact that the form of the front surface of the shell, subjected to the external load, is convex or concave. It is established that the most probable mechanism of pre-destruction of such structures is the accumulation of damage due to low-cycle fatigue of binder that occurs in the oscillation process of a reinforced structure.
Downloads
References
Bannister M. Challenges for composites into the next millennium - a reinforcement perspective // Compos. Part A-Appl. S. - 2001. - Vol. 32, no. 7. - P. 901-910. DOI
2. Mouritz A.P., Gellert E., Burchill P., Challis K. Review of advanced composite structures for naval ships and submarines // Compos. Struct. - 2001. - Vol. 53, no. 1. - P. 21-42. DOI
3. Mihajlin U.A. Konstrukcionnye polimernye kompozicionnye materialy. - SPb: Naucnye osnovy i tehnologii, 2010. - 822 s.
4. Gibson R.F. Principles of composite material mechanics. - Boca Raton: CRC Press, Taylor & Francis Group, 2012.
5. Gill S.K., Gupta M., Satsangi P. Prediction of cutting forces in machining of unidirectional glass fiber reinforced plastic composite // Front. Mech. Eng. - 2013. - Vol. 8, no. 2. - P. 187-200. DOI
6. Grigorenko A.M. Izotropnye i anizotropnye sloistye obolocki vrasenia peremennoj zestkosti. - Kiev: Naukova dumka, 1973. - 228 s.
7. Ambarcuman S.A. Obsaa teoria anizotropnyh obolocek. - M.: Nauka, 1974. - 446 s.
8. Malmejster A.K., Tamuz V.P., Teters G.A. Soprotivlenie polimernyh i kompozitnyh materialov. - Riga: Zinatne, 1980. - 571 s.
9. Andreev A.N., Nemirovskij U.V. Mnogoslojnye anizotropnye obolocki i plastiny. Izgib, ustojcivost’ i kolebania. - Novosibirsk: Nauka, 2001. - 287 s.
10. Abrosimov N.A., Bazenov V.G. Nelinejnye zadaci dinamiki kompozitnyh konstrukcij. - N. Novgorod: Izd-vo NNGU, 2002. - 400 s.
11. Reddy J.N. Mechanics of laminated composite plates and shells: Theory and analysis. - Boca Raton: CRC Press, 2004.
12. Muc A., Ulatowska A. Design of plates with curved fiber format // Compos. Struct. - 2010. - Vol. 92, no. 7. - P. 1728-1733. DOI
13. Muc A., Muc-Wierzgon M. An evolution strategy in structural optimization problems for plates and shells // Compos. Struct. - 2012. - Vol. 94, no. 4. - P. 1461-1470. DOI
14. Bazenov V.A., Krivenko O.P., Solovej N.A. Nelinejnoe deformirovanie i ustojcivost’ uprugih obolocek neodnorodnoj struktury: Modeli, metody, algoritmy, maloizucennye i novye zadaci. - M.: Kniznyj dom <>, 2012. - 336 s.
15. Andreev A. Uprugost’ i termouprugost’ sloistyh kompozitnyh obolocek. Matematiceskaa model’ i nekotorye aspekty cislennogo analiza. - Saarbrucken: Palmarium Academic Publishing, 2013. - 93 c.
16. Kaledin V.O., Aul’cenko S.M., Mitkevic A.B., Resetnikova E.V., Sedova E.A., Spakova U.V. Modelirovanie statiki i dinamiki obolocecnyh konstrukcij iz kompozicionnyh materialov. - M.: Fizmatlit, 2014. - 196 s.
17. Bel’kaid K., Tati A., Bumaraf R. Prostoj konecnyj element s pat’u stepenami svobody v uzle, osnovannyj na teorii sdvigovogo deformirovania tret’ego poradka // Mehanika kompozitnyh materialov. - 2016. - T. 52, No 2. - S. 367-384. DOI
18. Whitney J. A higher order theory for extensional motion of laminated composites // J. Sound Vib. - 1973. - Vol. 30, no. 1. - P. 85-97. DOI
19. Kompozicionnye materialy. Spravocnik / Pod red. D.M. Karpinosa. - Kiev: Naukova dumka, 1985. - 592 s.
20. Spravocnik po kompozitnym materialam: V 2-h kn. / Pod red. Dz. Lubina. - M.: Masinostroenie, 1988. - 448 s.
21. Kompozicionnye materialy. Spravocnik / Pod obs. red. V.V. Vasil’eva, U.M. Tarnopol’skogo. - M.: Masinostroenie, 1990. - 512 s.
22. Macko W., Kowalewski Z.L. Mechanical properties of A359/SiCp metal matrix composites at wide range of strain rates // Appl. Mech. Mater. - 2011. - V. 82. - P. 166-171.
23. Ankovskij A.P. Uprugoplasticeskoe deformirovanie izgibaemyh armirovannyh plastin pri oslablennom soprotivlenii poperecnomu sdvigu // PMM. - 2013. - T. 77, No 6. - S. 853-876. DOI
24. Ankovskij A.P. Primenenie avnogo po vremeni metoda central’nyh raznostej dla cislennogo modelirovania dinamiceskogo povedenia uprugoplasticeskih gibkih armirovannyh plastin // Vycisl. meh. splos. sred. - 2016. - T. 9, No 3. - S. 279-297. DOI
25. Ankovskij A.P. Modelirovanie dinamiceskogo povedenia gibkih armirovannyh plastin iz nelinejno-uprugih materialov // Konstrukcii iz kompozicionnyh materialov. - 2017. - No 1. - S. 12-26.
26. Romanova T.P., Ankovskij A.P. Sravnitel’nyj analiz modelej izgibnogo deformirovania armirovannyh balok-stenok iz nelinejno-uprugih materialov // Problemy procnosti i plasticnosti. - 2014. - T. 76, No 4. - S. 297-309.
27. Rihtmajer R., Morton K. Raznostnye metody resenia kraevyh zadac. - M: Mir, 1972. - 418 s.
28. Samarskij A.A. Teoria raznostnyh shem. - M.: Nauka, 1989. - 616 s.
29. Houlston R., DesRochers C.G. Nonlinear structural response of ship panels subjected to air blast loading // Comput. Struct. - 1987. - Vol. 26, no. 1-2. - P. 1-15. DOI
30. Zeinkiewicz O.C., Taylor R.L. The finite element method. - Oxford: Butterworth-Heinemann, 2000. - 707 p.
31. Librescu L., Oh S.-Y., Hohe J. Linear and non-linear dynamic response of sandwich panels to blast loading // Compos. Part B-Eng. - 2004. - Vol. 35, no. 6-8. - P. 673-683. DOI
32. Kazanci Z. Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses // Int. J. Nonlinear Mech. - 2011. - Vol. 46, no. 5. - P. 807-817. DOI
33. Novozilov V.V. Teoria uprugosti. - L.: Sudpromgiz, 1958. - 371 s.
34. Nemirovskij U.V., Ankovskij A.P. O nekotoryh osobennostah uravnenij obolocek, armirovannyh voloknami postoannogo poperecnogo secenia // Mehanika kompozicionnyh materialov i konstrukcij. - 1997. - T. 3, No 2. - S. 15-39.
35. Frejdental’ A., Gejringer H. Matematiceskie teorii neuprugoj splosnoj sredy. - M.: Fizmatgiz, 1962. - 432 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.