Numerically stable method for wave-field calculation and band-gap estimation in layered phononic crystals

Authors

  • Sergey Ivanovich Fomenko Institute for Mathematics, Mechanics and Informatics, Kuban State University
  • Mikhail Vladimirovich Golub Institute for Mathematics, Mechanics and Informatics, Kuban State University
  • Andrey Anatolievich Alexandrov Institute for Mathematics, Mechanics and Informatics, Kuban State University

DOI:

https://doi.org/10.7242/1999-6691/2017.10.3.19

Keywords:

band-gap, simulation, transfer matrix method, phononic crystal, elastic wave, numerical method

Abstract

High-frequency wave propagation in layered waveguides composed of periodic unit-cells is studied. Each unit-cell consists of a certain number of various elastic layers. Wave motion in the considered elastic structures (phononic crystals) is characterized by frequency bands, known as forbidden zones or band-gaps, where the full reflection of time-harmonic plane waves incident from an external half-space is observed. Using the transfer matrix method, the mathematical model of elastic wave propagation in anisotropic layered phononic crystals between two half-spaces is developed. A stable numerical algorithm for calculation of wave fields in the cells of phononic crystals is proposed. The amplitude coefficients of transmitted longitudinal and shear body waves are expressed in terms of transfer-matrix eigenvalues. A classification of band-gaps and pass-bands in layered anisotropic phononic crystals is proposed. It is based on the analysis of Bloch wavenumbers (expressed via the eigenvalues of the unit-cell transfer matrix) and the derived semi-analytical asymptotic expression of the transmission coefficients. Each Bloch wave has attenuation within the band-gaps of first kind. Waves propagating without attenuation are not excited within the band-gaps of second kind due to their specific polarization and boundary conditions at the interface between the multi-layered structure and the external half-space. By changing the parameters of the incident field, for instance, angles of incidence, band-gaps are converted into low transmission pass-bands where transmission coefficients are rather small. Therefore, a low transmission pass-band is similar to the traditional band-gap from an engineering point of view. The numerical results for energy transmission coefficient and Bloch waves are given at different angles of incidence; they demonstrate the formation of band-gaps in anisotropic phononic crystals.

Downloads

Download data is not yet available.

References

Gazalet J., Dupont S., Kastelik J.C., Rolland Q., Djafari-Rouhani B. A tutorial survey on waves propagating in periodic media: Electronic, photonic and phononic crystals. Perception of the Bloch theorem in both real and Fourier domains // Wave Motion. - 2013. - Vol. 50, no. 3. - P. 619-654. DOI
2. Breuer-Weil A., Almasoud N.N., Abbasi B., Yetisen A.K., Yun S.-H., Butt H. Parametric simulations of slanted 1D photonic crystal sensors // Nanoscale Research Letters. - 2016. - Vol. 11. - P. 157. DOI
3. Shi Z.F., Cheng Z.B., Xiong C. A new seismic isolation method by using a periodic foundation // Proceedings of the 12th International Conference on Engineering, Science, Construction, and Operations in Challenging Environments - Earth and Space. - 2010. - P. 2586-2594. DOI
4. D’akonov M.V., Ustinov U. Difrakcia sdvigovyh voln na beskonecnoj i konecnoj periodiceskih sistemah razrezov v uprugom sloe // Akusticeskij zurnal. - 1997. - T. 43, No 2. - S. 176-181.
5. Filipenko G.V. Izgibnye volny v balke s periodiceski raspolozennymi tocecnymi massami // Vycisl. meh. splos. sred. - 2015. - T. 8, No 2. - S. 153-163. DOI
6. Ballandras S., Lardat R., Wilm M., Pastureaud Th., Reinhardt A., Champavert N., Steichen W., Daniau W., Laude V., Armati R., Martin G. A mixed finite element/boundary element approach to simulate complex guided elastic wave periodic transducers // J. Appl. Phys. - 2009. - Vol. 105. - 014911. DOI
7. Li F.L., Wang Y.S., Zhang C.Z. Boundary element method for calculation of elastic wave transmission in two-dimensional phononic crystals // Sci. China Phys. Mech. Astron. - 2016. - Vol. 59. - 664602. DOI
8. Aki K., Richards P.G. Quantitative Seismology. - New York: University Science Books, 2002.
9. Chen A.-L., Wang Y.-S. Study on band gaps of elastic waves propagating in one-dimensional disordered phononic crystals // Physica B: Condensed Matter. - 2007. - Vol. 392, no. 1-2. - P. 369-378. DOI
10. Li Y., Wei P., Zhou Y. Band gaps of elastic waves in 1-D phononic crystal with dipolar gradient elasticity // Acta Mech. - 2016. - Vol. 227, no. 4. - P. 1005-1023. DOI
11. Golub M.V., Fomenko S.I., Bui T.Q., Zhang Ch., Wang Y.-S. Transmission and band gaps of elastic SH waves in functionally graded periodic laminates // Int. J. Solids Struct. - 2012. - Vol. 49, no. 2. - P. 344-354. DOI
12. Fomenko S.I., Golub M.V., Zhang Ch., Bui T.Q, Wang Y.-S. In-plane elastic wave propagation and band-gaps in layered functionally graded phononic crystals // Int. J. Solids Struct. - 2014. - Vol. 51, no. 13. - P. 2491-2503. DOI
13. Fomenko S.I. Volnovye pola i zapresennye zony v kvaziperiodiceskih sloistyh kompozitah // Ekologiceskij vestnik naucnyh centrov CES. - 2013. - No 4-1. - S. 120-126.
14. Fomenko S.I., Aleksandrov A.A. Volnovye pola i zapresennye zony v sloistyh p’ezoelektriceskih fononnyh kristallah // Ekologiceskij vestnik naucnyh centrov CES. - 2016. - No 4. - S. 92-99.
15. Gluskov E.V., Gluskova N.V., Vauer J. Formirovanie castotnyh polos propuskania i zapirania v uprugom volnovode s sistemoj prepatstvij // Akusticeskij zurnal. - 2011. - T. 57, No 3. - S. 291-302. DOI
16. Glushkov E., Glushkova N., Golub M., Eremin A. Resonance blocking and passing effects in two-dimensional elastic waveguides with obstacles // J. Acoust. Soc. Am. - 2011. - Vol. 130. - P. 113-121. DOI
17. Golub M.V. Modelirovanie difrakcii uprugih voln na mnozestvennyh polosovyh tresinah v sloistom periodiceskom kompozite // Vycisl. meh. splos. sred. - 2015. - T. 8, No 2. - S. 136-143. DOI
18. Nayfeh A.H., Achenbach J.D., Budiansky B., Lauwerier H.A., Saffman P.G., Van Wijngaarden L., Willis J.R. Wave propagation in layered anisotropic media with application to composites. - Amsterdam: Elsevier, 1995. - 331 p.
19. Glushkov E., Glushkova N. Blocking property of energy vortices in elastic waveguides // J. Acoust. Soc. Am. - 1997. - Vol. 102. - P. 1356-1360. DOI

Published

2017-10-04

Issue

Section

Articles

How to Cite

Fomenko, S. I., Golub, M. V., & Alexandrov, A. A. (2017). Numerically stable method for wave-field calculation and band-gap estimation in layered phononic crystals. Computational Continuum Mechanics, 10(3), 235-244. https://doi.org/10.7242/1999-6691/2017.10.3.19