Energy analysis of waves with negative group velocity in cylindrical shell

Authors

  • Georgiy Viktorovich Filippenko Institute of Mechanical Engineering RAS

DOI:

https://doi.org/10.7242/1999-6691/2017.10.2.16

Keywords:

wave propagation, cylindrical shell, shell vibrations, local and integral energy fluxes

Abstract

The problem of joint oscillations of a thin infinite cylindrical Kirchoff-Love shell is considered. The free vibrations of the system are found. The propagating waves and energy flux are analyzed. Much attention is given to the exploration of waves with negative group velocity in the neighborhood of the bifurcation point of dispersion curves. The asymptotics of dispersion curves are used in the neighborhood of the bifurcation point for this case. The interval of system parameters (the relation of lengths of circle waves and lengths of waves along cylinder to the relative thickness of the cylinder) is estimated when the negative group velocity arises. The range of frequencies and wavenumbers where this effect is observed is also estimated. The difference in the kinds of asymptotics for the regular case and the case of bifurcation is discussed. The analysis of arising effects is carried out in terms of kinematic and dynamic variables and in terms of energy flux. Relative advantages and disadvantages of these approaches are discussed. Comparison of the contributions of various mechanisms of energy transmission in the shell to the integral energy flux is performed. A special role of the rotational component in the occurrence of a subzero integrated energy flux is analyzed. The dependence of subzero energy flux and dynamic and kinematic variables on the relative thickness of the shell, the mode number and other parameters of the system is considered. The proportionality of the energy flux and its components for various modes is analyzed. The possible fields of application of the obtained effects are established.

Downloads

Download data is not yet available.

References

Fuller C.R., Fahy F.J. Characteristics of wave propagation and energy distributions in cylindrical elastic shells filled with fluid // J. Sound Vib. - 1982. - Vol. 81, no. 4. - P. 501-518. DOI
2. Pavic G. Vibrational energy flow in elastic circular cylindrical shells // J. Sound Vib. - 1990. - Vol. 142, no. 2. - P. 293-310. DOI
3. Pavic G. Vibroacoustical energy flow through straight pipes // J. Sound Vib. - 1992. - Vol. 154, no. 3. - P. 411-429. DOI
4. Feng L. Acoustic properties of fluid-filled elastic pipes // J. Sound Vib. - 1994. - Vol. 176, no. 3. - P. 399-413. DOI
5. Filippenko G.V. Analiz potokov energii v beskonecnoj cilindriceskoj obolocke kontaktiruusej so szimaemoj zidkost’u // Materialy XXVII sessii RAO, Sankt-Peterburg, 16-18 aprela 2014 g., 8 s. (URL: http://rao.akin.ru/Rao/sess27/filippenko.pdf).
6. Ter-Akopanc G.L. Osesimmetricnye volnovye processy v cilindriceskih obolockah, zapolnennyh zidkost’u // Estestvennye i tehniceskie nauki. - 2015. - No7(85). - C. 10-14.
7. Ter-Akopanc G.L. Dispersionnye krivye i modal’nye koefficienty pri rasprostranenii voln v obolocke s zidkost’u // Estestvennye i tehniceskie nauki. - 2015. - No 6(84). - C. 77-81.
8. Filippenko G.V. Energeticeskie aspekty osesimmetricnogo rasprostranenia voln v beskonecnoj cilindriceskoj obolocke, polnost’u pogruzennoj v zidkost’ // Vycisl. meh. splos. sred. - 2013. - T. 6, No 2. - S. 187-197. DOI
9. Filippenko G.V. Energeticeskie aspekty rasprostranenia voln v beskonecnoj cilindriceskoj obolocke, polnost’u pogruzennoj v zidkost’// Vycisl. meh. splos. sred. - 2014. - T. 7, No 3. - S. 295-305. DOI
10. Eliseev V.V. Mehanika uprugih tel. - SPb.: Izd.-vo SPbGPU, 2003. - 336 s.
11. Zinov’eva T.V. Dispersia voln v cilindriceskoj obolocke // Naucno-tehniceskie vedomosti SPbGPU. - 2007. - T. 52-1. - S. 53-58.
12. Eliseev V.V., Zinov’eva T.V. Dvumernye (obolocecnye) i trehmernaa modeli dla uprugogo tonkostennogo cilindra // Vestnik PNIPU. Mehanika. - 2014. - No 3. - S. 50-70. DOI
13. Vesev V.A., Kouzov D.P., Mirolubova N.A. Potoki energii i dispersia normal’nyh voln izgibnogo tipa v balke krestoobraznogo profila // Akusticeskij zurnal. - 1999. - T. 45, No 3. - S. 331-336.
14. Sorokin S.V., Nielsen J.B., Olhoff N. Green’s matrix and the boundaryintegral equation method for the analysis of vibration and energy flow in cylindrical shells with and without internal fluid loading // J. Sound Vib. - 2004. - Vol. 271, no. 3-5. - P. 815-847. DOI
15. Kouzov D.P., Mirolubova N.A. Lokal’nye potoki energii vynuzdennyh kolebanij tonkoj uprugoj polosy // Vycisl. meh. splos. sred. - 2012. - T. 5, No 4. - S. 397-404. DOI
16. Novozilov V.V. Teoria tonkih obolocek. - SPb: Izd-vo S.-Peterb. un-ta, 2010. - 380 s.

Published

2017-06-30

Issue

Section

Articles

How to Cite

Filippenko, G. V. (2017). Energy analysis of waves with negative group velocity in cylindrical shell. Computational Continuum Mechanics, 10(2), 187-196. https://doi.org/10.7242/1999-6691/2017.10.2.16