Numerical solution of the beam pure bending problem in the framework of the theory of elastic materials with voids

Authors

  • Yury Olegovich Solyaev Institute of Applied Mechanics RAS
  • Sergey Аlbertovich Lurie Institute of Applied Mechanics RAS
  • Aleksandr Vladimirovich Volkov Institute of Applied Mechanics RAS

DOI:

https://doi.org/10.7242/1999-6691/2017.10.2.12

Keywords:

theory of elastic materials with voids, micro-dilatation theory, porous media, pure bending, finite element modeling, surface effects

Abstract

The beam pure bending problem is solved numerically in the framework of the theory of elastic materials with voids, also called the elastic micro-dilatation theory. This theory describes a particular case of Mindlin’s type media with microstructure and contains only non-zero micro-dilatations. The physical meaning of the model involves a more comprehensive description of the stress-strain state of porous media, in which the volume pore fraction changes in response to applied external loads. In this paper we consider a generalized variant of the theory with surface effects. The finite element method is used to find a solution to the beam pure bending problem. The semi-inverse analytical micro-dilatation solution is compared with the FEM solution. It is shown that, unlike the analytical solution, in the FEM solution all the components of the stress-strain tensors are not equal to zero. There are also self-equilibrated normal stress components in the width direction and shear stress components in the cross section perpendicular to the neutral plane. In the numerical solution, all the stress boundary conditions are accurately satisfied on the free surfaces of the beam. Comparison of analytical and numerical simulation results shows that the analytical solution allows one to obtain sufficiently precise estimates to predict the influence of non-classical scale effects and surface effects on the effective stiffness and stress state of porous beams.

Downloads

Download data is not yet available.

References

Mindlin R.D. Mikrostruktura v linejnoj uprugosti // Mehanika. - 1964. - No 4. - S. 129-160. DOI
2. Markov K.Z. K teorii uprugosti sred so svobodnoj dilataciej castic // Teoreticeskaa i prikladnaa mehanika. - 1974. - T. 6, No 1. - S. 93-99.
3. Nunziato J.W., Cowin S.C. A nonlinear theory of elastic materials with voids // Arch. Rational Mech. Anal. - 1979. - Vol. 72, no. 2. - P. 175-201. DOI
4. Markov K.Z. On the dilatation theory of elasticity // ZAMM. - 1981. - Vol. 61, no. 8. - P. 349-358. DOI
5. Cowin S.C., Nunziato J.W. Linear elastic materials with voids // J. Elasticity. - 1983. - Vol. 13, no. 2. - P. 125-147. DOI
6. Markov K.Z. On a microstructural model of damage in solids // Int. J. Eng. Sci. - 1995. - Vol. 33, no. 1. - P. 139-150. DOI
7. Thurieau N., Kouitat Njiwa R., Taghite M. The local point interpolation-boundary element method (LPI-BEM) applied to the solution of mechanical 3D problem of a microdilatation medium // Eur. J. Mech. A-Solid. - 2014. - Vol. 47. - P. 391-399. DOI
8. Ciarletta M., Chirita S., Passarella F. Some results on the spatial behaviour in linear porous elasticity // Arch. Mech. - 2005. - Vol. 57, no. 1. - P. 43-65.
9. Dell’Isola F., Batra R.C. Saint-Venant’s problem for porous linear elastic materials // J. Elasticity. - 1997. - Vol. 47, no. 1. - P. 73-81. DOI
10. Iesan D., Scalia A. On the deformation of functionally graded porous elastic cylinders // J. Elasticity. - 2007. - Vol. 87, no. 2. - P. 147-159. DOI
11. Ghiba I. Semi-inverse solution for Saint-Venant’s problem in the theory of porous elastic materials // Eur. J. Mech. A-Solid. - 2008. - Vol. 27, no. 6. - P. 1060-1074. DOI
12. Cowin S.C. The stresses around a hole in a linear elastic material with voids // Q. J. Mechanics Appl. Math. - 1984. - Vol. 37, no. 3. - P. 441-465. DOI
13. Cowin S.C., Puri P. The classical pressure vessel problems for linear elastic materials with voids // J. Elasticity. - 1983. - Vol. 13, no. 2. - P. 157-163. DOI
14. Batra R.C., Yang J.S. Saint-Venant’s principle for linear elastic porous materials // J. Elasticity. - 1995. - Vol. 39, no. 3. - P. 265-271. DOI
15. Iesan D. A theory of thermoelastic materials with voids // Acta Mechanica. - 1986. - Vol. 60, no. 1. - P. 67-89. DOI
16. Iesan D. Some theorems in the theory of elastic-materials with voids // J. Elasticity. - 1985. - Vol. 15, no. 2. - P. 215-224. DOI
17. Chandrasekharaiah D.S., Cowin S.C. A complete solution for a unified system of field equations of thermoelasticity and poroelasticity // Acta Mechanica. - 1993. - Vol. 99, no. 1. - P. 225-233. DOI
18. Chandrasekharaiah D.S., Cowin S.C. Unified complete solutions for the theories of thermoelasticity and poroelasticity // J. Elasticity. - 1989. - Vol. 21, no. 1. - P. 121-126. DOI
19. Birsan M. A bending theory of porous thermoelastic plates // J. Therm. Stresses. - 2003. - Vol. 26, no. 1. - P. 67-90. DOI
20. Birsan M., Altenbach H. On the theory of porous elastic rods // Int. J. Solids Struct. - 2011. - Vol. 48, no. 6. - P. 910-924. DOI
21. Ciarletta M., Iovane G., Sumbatyan M.A. On stress analysis for cracks in elastic materials with voids // Int. J. Eng. Sci. - 2003. - Vol. 41, no. 20. - P. 2447-2461. DOI
22. Popuzin V., Pennisi M. Fast numerical method for crack problem in the porous elastic material // Meccanica. - 2014. - Vol. 49, no. 9. - P. 2169-2179. DOI
23. Scalia A. Contact problem for porous elastic strip // Int. J. Eng. Sci. - 2002. - Vol. 40, no. 4. - P. 401-410. DOI
24. Pompei A., Rigano A., Sumbatyan M.A. Contact problem for a rectangular punch on the porous elastic half-space // J. Elasticity. - 2005. - Vol. 76, no. 1. - P. 1-19. DOI
25. Chandrasekharaiah D.S. Effects of surface stresses and voids on rayleigh waves in an elastic solid // Int. J. Eng. Sci. - 1987. - Vol. 25, no. 2. - P. 205-211. DOI
26. Lurie S.A., Kalamkarov A.L. General theory of defects in continuous media // Int. J. Solids Struct. - 2006. - Vol. 43, no. 1. - P. 91-111. DOI
27. Lurie S.A., Kalamkarov A.L. General theory of continuous media with conserved dislocations // Int. J. Solids Struct. - 2007. - Vol. 44, no. 22-23. - P. 7468-7485. DOI
28. Lur’e S.A., Belov P.A. Teoria sred s sohranausimisa dislokaciami. Castnye slucai: sredy Kossera i Aero-Kuvsinskogo, poristye sredy, sredy s <> // Sovremennye problemy mehaniki geterogennyh sred: Sb. nauc. tr. - Izd-vo IPRIM RAN, 2005. - S. 235-267.
29. Iovane G., Nasedkin A.V. Finite element analysis of static problems for elastic media with voids // Comput. Struct. - 2005. - Vol. 84, no. 1-2. - P. 19-24. DOI
30. Iovane G., Nasedkin A.V. Finite element dynamic analysis of anisotropic elastic solids with voids // Comput. Struct. - 2009. - Vol. 87, no. 15-16. - P. 981-989. DOI
31. Ramezani H., Steeb H., Jeong J. Analytical and numerical studies on Penalized Micro-Dilatation (PMD) theory: Macro-micro link concept // Eur. J. Mech. A-Solid. - 2012. - Vol. 34. - P. 130-148. DOI
32. Jeong J., Sardini P., Ramezani H., Siitari-Kauppi M., Steeb H. Modeling of the induced chemo-mechanical stress through porous cement mortar subjected to CO2: Enhanced micro-dilatation theory and 14C-PMMA method // Comp. Mater. Sci. - 2013. - Vol. 69. - P. 466-480. DOI
33. Jeong J., Ramezani H., Sardini P., Kondo D., Ponson L., Siitari-Kauppi M. Porous media modeling and micro-structurally motivated material moduli determination via the micro-dilatation theory // Eur. Phys. J. Spec. Top. - 2015. - Vol. 224, no. 9. - P. 1805-1816. DOI
34. Ramezani H., Jeong J. Non-linear elastic micro-dilatation theory: Matrix exponential function paradigm // Int. J. Solids Struct. - 2015. - Vol. 67-68. - P. 1-26. DOI
35. Thurieau N., Njiwa K.R., Taghite M. The local point interpolation-boundary element method (LPI-BEM) applied to the solution of mechanical 3D problem of a microdilatation medium // Eur. J. Mech. A-Solid. - 2014. - Vol. 47. - P. 391-399. DOI
36. Lakes R.S. Experimental microelasticity of two porous solids // Int. J. Solids Struct. - 1986. - Vol. 22, no. 1. - P. 55-63. DOI
37. Iesan D. Second-order effects in the torsion of elastic materials with voids // ZAMM. - Vol. 85, no. 5. - P. 351-365. DOI
38. Lazar M., Maugin G.A. On microcontinuum field theories: the Eshelby stress tensor and incompatibility conditions // Philos. Mag. - 2007. - Vol. 87, no. 25. - P. 3853-3870. DOI
39. Cowin S.C. A note on the problem of pure bending for linear elastic materials with voids // J. Elasticity. - 1984. - Vol. 14, no. 2. - P. 227-233. DOI

Published

2017-06-30

Issue

Section

Articles

How to Cite

Solyaev, Y. O., Lurie S. А., & Volkov, A. V. (2017). Numerical solution of the beam pure bending problem in the framework of the theory of elastic materials with voids. Computational Continuum Mechanics, 10(2), 137-152. https://doi.org/10.7242/1999-6691/2017.10.2.12