Inelastic interaction and splitting of deformation solitons propagating in the rod

Authors

  • Vladimir Ivanovich Erofeev Mechanical Engineering Research Institute RAS
  • Vladimir Vladimirovich Kazhaev Mechanical Engineering Research Institute RAS

DOI:

https://doi.org/10.7242/1999-6691/2017.10.2.11

Keywords:

rod, soliton deformation, interaction, splitting

Abstract

A brief analytical review of publications devoted to theoretical studies of the formation and peculiarities of distribution of longitudinal deformation solitons in nonlinear elastic rods and to experimental detection of such waves is given. The focus is on presenting the results of original research of the interaction of solitons. Numerical modeling shows that qualitatively different scenarios for this interaction depend on the relative speed of collision of solitons. At low collision velocity the interaction occurs according to the scenario of classical solitons described by the Korteweg-de Vries equation, i.e., the secondary solitons have the same speed, amplitude and width as the initial solitons. At higher relative speed the collision of solitons is inelastic in nature: part of their energy is lost in the interaction, being realized in the quasi-harmonic packets of waves moving with the speed of linear waves. A further increase in impact velocity leads to the effect of fragmentation of solitons, which is considered by the authors as the formation of a number of secondary solitons greater than that of interacted solitons. In addition to the interaction between solitons, the interaction of solitons with the rod boundary is investigated.

Downloads

Download data is not yet available.

References

Fiziceskij enciklopediceskij slovar’ / Pod red. A.M. Prohorova. - M.: Sovetskaa Enciklopedia, 1984. - 944 s.
2. Zabusky N.J., Kruskal M.D. Interaction of "solitons" in a collisionless plasma and the recurrence of initial states // Phys. Rev. Lett. - 1965. - Vol. 15, no. 6. - P. 240-243. DOI
3. Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M. Method for solving the Korteweg-deVries equation // Phys. Rev. Lett. - 1967. - Vol. 19, no. 19. - P. 1095-1097. DOI
4. Zaharov V.E., Manakov S.V., Novikov S.P., Pitaevskij L.P. Teoria solitonov: Metod obratnoj zadaci. - M.: Nauka, 1980. - 320 c.
5. Artobolevskij I.I., Bobrovnickij U.I., Genkin M.D. Vvedenie v akusticeskuu dinamiku masin. - M.: Nauka, 1979. - 296 c.
6. Grigoluk E.I., Selezov I.T. Neklassiceskie teorii kolebanij sterznej, plastin i obolocek. - M.: VINITI, 1973. - 272 s.
7. Vibracii v tehnike: spravocnik v 6 tomah. T. 1. Kolebania nelinejnyh sistem / pod red. V.V. Bolotina. - M.: Masinostroenie, 1978. - 352 s.
8. Erofeev V.I., Kazaev V.V., Semerikova N.P. Volny v sterznah. Dispersia. Dissipacia. Nelinejnost’. - M.: Fizmatlit, 2002. - 208 s.
9. Nariboli G.A. Nonlinear longitudinal dispersive waves in elastic rods // J. Math. Phys. Sci. - 1970. - Vol. 4. - P. 64-73.
10. Nariboli G.A., Sedov A. Burgers’s-Korteweg-De Vries equation for viscoelastic rods and plates // J. Math. Anal. Appl. -1970. - Vol. 32, no. 3. - P. 661-677. DOI
11. Ostrovskij L.A., Sutin A.M. Nelinejnye uprugie volny v sterznah // PMM. - 1977. - T. 41, No 3. - S. 531-537. DOI
12. Ostrovskij L.A., Pelinovskij E.N. O priblizennyh uravneniah dla voln v sredah s malymi nelinejnost’u i dispersiej // PMM. - 1974. -T. 38, No 1. - S. 121-124. DOI
13. Erofeev V.I., Potapov A.I. Nelinejnye modeli prodol’nyh kolebanij sterznej // Gidroaeromehanika i teoria uprugosti / Vses. mezvuz. sb. - Dnepropetrovsk: DGU. - 1984. - No 32. - S. 78-82.
14. Samsonov A.M. O susestvovanii solitonov prodol’noj deformacii v beskonecnom nelinejno-uprugom sterzne // DAN SSSR. - 1988. - T. 299. - S. 1083-1086.
15. Samsonov A.M., Sokurinskaa E.V. O vozmoznosti vozbuzdenia solitona prodol’noj deformacii v nelinejno-uprugom sterzne // ZTF. -1988. -T. 58, No 8. - S. 1632-1634.
16. Drejden G.V., Ostrovskij U.I., Samsonov A.M., Semenova I.V., Sokurinskaa E.V. Formirovanie i rasprostranenie solitonov deformacii v nelinejno-uprugom tverdom tele // ZTF. - 1988. - T. 58, No 10. - S. 2040-2047.
17. Drejden G.V., Porubov A.V., Samsonov A.M., Semenova I.V., Sokurinskaa E.V. Ob eksperimentah po rasprostraneniu solitonov deformacii v nelinejno-uprugom sterzne // PZTF. - 1995. - T. 21, No 11. - S. 42-46.
18. Gerasimov S.I., Erofeev V.I., Kikeev V.A., Holin S.A. K vizualizacii nelinejnyh voln deformacii // VANT. Seria: Teoreticeskaa i prikladnaa fizika. - 2012. - No 2. - S. 18-23.
19. Porubov A.V., Samsonov A.M. Utocnenie modeli rasprostranenia prodol’nyh voln deformacii v nelinejno-uprugom sterzne // Pis’ma v ZTF. -1993. -T. 19, No 12. - S. 26-29.
20. Erofeev V.I., Zemlanuhin A.I., Katson V.M., Mal’hanov A.O. Nelinejnye lokalizovannye prodol’nye volny v plastine, vzaimodejstvuusej s magnitnym polem // Vycisl. meh. splos. sred. - 2010. - T. 3, No 4. - S. 5-15. DOI
21. Erofeev V.I., Malkhanov A.O., Zemlyanukhin A.I., Catson V.M. Nonlinear magnetoelastic waves in a plate // Advanced Structured Materials / Ed. by H. Altenbach, V. Eremeyev. - 2011. - P. 125-134. (URL: http://www.springer.com/la/book/9783642218545).
22. Erofeev V.I., Mal’hanov A.O. Nelinejnye lokalizovannye prodol’nye magnitouprugie volny v plastine, nahodasejsa v proizvol’no orientirovannom magnitnom pole // Vycisl. meh. splos. sred. - 2012. -T. 5, No 1. -S.79-84. DOI
23. Blinkova A.U., Blinkov U.A., Mogilevic L.I. Nelinejnye volny v soosnyh cilindriceskih obolockah, soderzasih vazkuu zidkost’ mezdu nimi, s ucetom rasseania energii // Vycisl. meh. splos. sred. - 2013. - T. 6, No 3. - S. 336-345. DOI
24. Potapov A.I., Vesnitsky A.I. Interaction of solitary waves under head-on collisions. Experimental investigation // Wave Motion. - 1994. - Vol. 19, no. 1. - P. 29-35. DOI
25. Erofeev V.I., Kazaev V.V., Pavlov I.S. Neuprugoe vzaimodejstvie i rasseplenie solitonov deformacii, rasprostranausihsa v zernistoj srede // Vycisl. meh. splos. sred. - 2013. - T. 6, No 2. - S. 140-150. DOI
26. Erofeev V.I., Kazhaev V.V., Pavlov I.S. Inelastic interaction and splitting of strain solitons propagating in a one-dimensional granular medium with internal stress // Advanced Structured Materials / Ed. by H. Altenbach, S. Forest. - 2016. - P. 145-162. (URL: http://www.springer.com/jp/book/9783319317199).

Published

2017-06-30

Issue

Section

Articles

How to Cite

Erofeev, V. I., & Kazhaev, V. V. (2017). Inelastic interaction and splitting of deformation solitons propagating in the rod. Computational Continuum Mechanics, 10(2), 127-136. https://doi.org/10.7242/1999-6691/2017.10.2.11