Numerical estimates of the adequacy of a mathematical model of hydroelastic oscillations in curved pipelines

Authors

  • Oleg Pavlovich Tkachenko Computer Center FEB RAS
  • Anna Sergeevna Ryabokon’ Computer Center FEB RAS

DOI:

https://doi.org/10.7242/1999-6691/2017.10.1.8

Keywords:

water hammer, bent pipeline, mathematical model verification, hydro-elasticity

Abstract

The problem was set in the research context of water hammer in the pipeline system with complex configuration. Usually, the experimental data in the literature on such pipelines are limited to the charts of the unknown functions. Numerical criteria of the adequacy of a mathematical model for a pipeline and an algorithm for its quantitative verification are selected for the case where data is presented in a reference source only by the charts of functions. A new mathematical model is presented and a series of numerical experiments for the water hammer in a variety of curved pipelines have been performed. To verify the model, two pipelines are taken: a pipeline consisting of seven sections of the total length of 48 m, and a smoothly curved pipe of the total length of 624 mm. In addition, acoustic oscillations of a bent pipe of 300 mm in length are calculated. Based on the published data on these pipelines and the results of numerical experiments, quantitative characteristics of the adequacy of the mathematical model proposed are found. These characteristics are the results from statistical analysis of discrete time series of fluid pressure, which are obtained by digitizing charts from the articles referenced here and by solving equations of the tested model. It has been found that the description of the results of field experiments by the proposed mathematical model exhibits accuracy close to that of a mathematical description of the reference sources. In the case when a pipe consists of seven sections, its accuracy can be improved using the parameter identification methods. Thus, the proposed mathematical model adequately describes the results obtained for hydraulic shock in pipes and covers different cases of hydro-elastic vibrations from a unified viewpoint.

Downloads

Download data is not yet available.

References

Critical urban infrastructure handbook / Editor-in-Chief M. Hamada. - London, New York: CRC Press, Taylor & Francis Group, 2014. - 581 p.
2. Towhata I. Geotechnical earthquake engineering. - Berlin, Heidelberg: Springer-Verlag, 2008. - 684 p.
3. Feodos’ev V.I. O kolebaniah i ustojcivosti truby pri protekanii cerez nee zidkosti // Inzenernyj sbornik. - 1951. - T. 10. - S. 169-170.
4. Kwon H.J. Computer simulations of transient flow in a real city water distribution system // KSCE J. Civ. Eng. - 2007. - Vol. 11, no. 1. - P. 43-49. DOI
5. Zukovskij N.E. O gidravliceskom udare v vodoprovodnyh trubah. - M.-L.: Gostehizdat, 1949. - 104 s.
6. Svetlitsky V.A. Dynamics of rods. - Berlin, Heidelberg: Springer, 2005. - 448 p.
7. Aldosin G.T. Gidravliceskij udar v deformirovannom truboprovode // Vestn. Leningr. un-ta. Ser. mehaniki, matematiki i astronomii. - 1961. - V. C. - S. 93-102.
8. Aldosin G.T. K istorii gidrouprugosti ot Ejlera do nasih dnej // MTT. - 2007. - No 27. - S. 184-191.
9. Skalak R. An extension of the theory of water hammer // Trans. ASME. - 1956. - Vol. 78, no. 1. - P. 105-116.
10. Otwell R.S. The effect of elbow translations on pressure transient analysis of piping systems // Fluid Transients and Fluid-Structure Interaction, ASME PVP. - 1982. - Vol. 64. - P. 127-136.
11. Wiggert D.C., Otwell R.S., Hatfield F.J. The effect of elbow restraint of pressure transients // J. Fluids Eng. - 1985. - Vol. 107, no. 3. - P. 402-406. DOI
12. Lavooij C.S.W., Tusseling A.S. Fluid-structure interaction in liquid-filled piping systems // J. Fluids Struct. - 1991. - Vol. 5, no. 5. - P. 573-595. DOI
13. Tijsseling A.S., Vardy A.E., Fan D. Fluid-structure interaction and cavitation in a single-elbow pipe system // J. Fluids Struct. - 1996. - Vol. 10, no. 4. - P. 395-420. DOI
14. Paidoussis M.P. Fluid-structure interactions. Slender structures and axial flow. - San Diego, London: Academic Press, 1998. - 574 p.
15. Bai Y. Pipelines and risers. - London, New York, Tokyo: Elsevier Science Ltd., 2003. - 500 p.
16. Egunov U.V., Kocetkov A.V. Cislennoe issledovanie nelinejnoj dinamiki gidrouprugosvazannyh ploskih krivolinejnyh sterznej // PMTF. - 1999. - T. 40, No 1. - S. 212-219.
17. Kulikov U.A., Loskutov U.V., Maksimov M.A., Zdanovic U.K. Rascetno-eksperimental’noe issledovanie uprugogo deformirovania truboprovoda iz polimernoj plenki pri dejstvii udarnoj nagruzki // PMTF. - 2001. - T. 42, No 2(246). - P. 122-128. DOI
18. Mironova T.B., Prokof’ev A.B., Sahmatov E.V. Razrabotka konecnoelementnoj modeli vibroakusticeskih processov v truboprovode s pul’siruusim potokom rabocej zidkosti // Vestnik Samarskogo universiteta. Aerokosmiceskaa tehnika, tehnologii i masinostroenie. - 2008. - No 3. - S. 157-162.
19. Rukavisnikov V.A., Tkacenko O.P. Cislennoe i asimptoticeskoe resenie uravnenij rasprostranenia gidrouprugih kolebanij v izognutom truboprovode // PMTF. - 2000. - T. 41, No 6. - S. 161-169. DOI
20. Tkacenko O.P. Kinematika i dinamika podzemnogo truboprovoda pri konecnyh peremeseniah // Vycislitel’nye tehnologii. - 2003. - T. 8, No 4. - C. 97-107.
21. Rukavisnikov V.A., Tkacenko O.P. Cislennyj analiz matematiceskoj modeli gidrouprugih kolebanij v izognutom truboprovode // Matem. modelirovanie. - 2011. - T. 23, No 1. - S. 51-64. DOI
22. Tkacenko O.P. Cislennyj analiz dinamiki krivolinejnogo truboprovoda // Vycisl. meh. splos. sredy. - 2012. - T. 5, No 3. - S. 345-353. DOI
23. Vlasov V.Z. Obsaa teoria obolocek i ee prilozenia v tehnike // Vlasov V.Z. Izbrannye trudy. - T. 1. - M.: Izd-vo AN SSSR, 1962. - S. 15-439.
24. Lojcanskij L.G. Mehanika zidkosti i gaza. - M.: Drofa, 2003. - 840 s.
25. Nikuradse J. Laws of flow in rough pipes. - Washington: NACA, Technical Memorandum 1292, 1950. - 63 p.
26. Shin-itiro Goto Amplitude equations for a linear wave equation in a weakly curved pipe // J. Phys. A-Math. Theor. - 2009. - Vol. 42, no. 44. - 445205. DOI
27. Samarskij A.A., Popov U.P. Raznostnye metody resenia zadac gazovoj dinamiki. - M.: Nauka, 1992. - 424 c.
28. Plot Digitizer http://plotdigitizer.sourceforge.net/ (data obrasenia: 16.01.2017).
29. De Souza P.N., Fateman R.J., Moses J., Yapp C. The Maxima Book, 2004. http://maxima.sourceforge.net/docs/maximabook/maximabook-19-Sept-2004.pdf (data obrasenia: 16.01.2017).
30. Cistakov V.P. Kurs teorii veroatnostej. - M.: Nauka, 1982. - 256 s.
31. Ljung L. System identification: Theory for the User. - New Jersey: Prentice Hall PTR, 1999. - 609 p.
32. Novozilov V.V. Teoria tonkih obolocek. - SPb: Izd-vo S.-Peterb. un-ta, 2010. - 380 s.

Published

2017-03-30

Issue

Section

Articles

How to Cite

Tkachenko, O. P., & Ryabokon’, A. S. (2017). Numerical estimates of the adequacy of a mathematical model of hydroelastic oscillations in curved pipelines. Computational Continuum Mechanics, 10(1), 90-102. https://doi.org/10.7242/1999-6691/2017.10.1.8