Stability of thermovibrational convection of pseudoplastic fluid in plane vertical layer
DOI:
https://doi.org/10.7242/1999-6691/2017.10.1.7Keywords:
non-Newtonian fluid, thermovibrational convection, high-frequency vibration, stability, vertical layerAbstract
Based on equations for thermal vibrational convection, the structure of the plane-parallel convective flow in a vertical layer of Williamson’s fluid is investigated. The layer is subjected to high frequency linear polarized vibrations directed along the layer. It is shown that with the growth of vibrations, the nonlinear-viscous properties of a pseudoplastic fluid stop producing the effect on the structure and intensity of its main flow, which becomes very similar to that of the Newtonian fluid. For the case of longitudinal high-frequency linear polarized vibrations, a linear stability problem is formulated and solved. This problem deals with the stability of the averaged plain parallel flow of the pseudoplastic Williamson’s fluid with respect to small periodic perturbations directed along the layer. Numerical calculations show that, as in the case of the Newtonian fluid, at small values of the Prandtl number the monotonic hydrodynamic perturbations are the most dangerous. With increasing Prandtl number, the oscillatory thermal perturbations become more dangerous. Strengthening of the pseudoplastic fluid properties leads to destabilization of the main flow relative to the both types of instabilities. The presence of vibrations, as in the case of the Newtonian fluid, causes the appearance of an additional vibration mode of instability and the relatively small values of the Graschof number corresponding to it. The influence of this vibration mode on the stability of the main flow is determined by the vibration frequency and the magnitude of a temperature gradient. Amplification of the vibration intensity leads to flow destabilization in all examined instability modes. For the given set of rheological parameters of Williamson’s fluid, there are critical values of the modified and vibration Graschof number, at which the averaged flow becomes absolutely unstable with respect to all types of the instabilities. The absolute destabilization of the main flow occurs at higher values of the vibration Graschof number compared to that for the Newtonian fluid.
Downloads
References
Gersuni G.Z. Zuhovickij E.M. O dvuh tipah neustojcivosti konvektivnogo dvizenia mezdu parallel’nymi vertikal’nymi ploskostami // Izvestia VUZov. Fizika. - 1958. - No 4. - S. 43-47.
2. Rudakov R.N. O malyh vozmuseniah konvektivnogo dvizenia mezdu vertikal’nymi ploskostami. // PMM. - 1966. - T. 30, No 2. - S. 362-368. DOI
3. Birih R.V., Gersuni G.Z., Zuhovickij E.M., Rudakov R.N. O kolebatel’noj neustojcivosti ploskoparallel’nogo konvektivnogo dvizenia v vertikal’nom kanale // PMM. - 1972. - T. 36, No 4. - S. 745-748. DOI
4. Gersuni G.Z., Zuhovickij E.M., Nepomnasij A.A. Ustojcivost’ konvektivnyh tecenij. - M.: Nauka, 1989. - 318 s.
5. Perminov A.V., Lubimova T.P. Ustojcivost’ stacionarnogo ploskoparallel’nogo tecenia psevdoplasticeskoj zidkosti v ploskom vertikal’nom sloe // Vycisl. meh. splos. sred. - 2014. - T. 7, No 3. - S. 270-278. DOI
6. Lyubimova T.P., Perminov A.V. Stability of stationary plane-parallel flow of viscoplastic fluid between two differentially heated vertical plates // J. Non-Newton. Fluid. - 2015. - Vol. 224. - P. 51-60. DOI
7. Lubimova. T.P. O konvektivnyh dvizeniah nen’utonovskoj zidkosti v zamknutoj polosti, podogrevaemoj snizu // MZG. - 1974. - No 2. - S. 181-184. DOI
8. Semakin I.G. Gidrodinamiceskaa ustojcivost’ konvektivnogo tecenia nen’utonovskoj zidkosti v vertikal’nom sloe // Inzenerno-fiziceskij zurnal. - 1977. - T. 32, No 6. - S. 1065-1070. DOI
9. Semakin I.G. Kolebatel’naa neustojcivost’ stacionarnoj konvekcii nen’utonovskoj zidkosti // Inzenerno-fiziceskij zurnal. - 1978. - T. 35, No 2. - S. 320-325. DOI
10. Subbotin E.V., Trufanova N.M., Serbinin A.G. Cislennoe issledovanie tecenij polimernyh zidkostej v kanale snekovogo ekstrudera na osnove odno- i dvuhmernyh modelej // Vycisl. meh. splos. sred. - 2012. - T. 5, No 4. - S. 452-460. DOI
11. Lubimova T.P. Cislennoe issledovanie konvekcii vazkoplasticnoj zidkosti v zamknutoj oblasti // MZG. - 1977. - No 1 - S. 3-8. DOI
12. Lubimova T.P. O konvektivnyh dvizeniah vazkoplasticnoj zidkosti v pramougol’noj oblasti // MZG. - 1979. - No 5 - S. 141-144. DOI
13. Lubimova T.P. O stacionarnyh reseniah uravnenij konvekcii vazkoplasticnoj zidkosti, podogrevaemoj snizu, pri ucete temperaturnoj zavisimosti reologiceskih parametrov // Izvestia AN BSSR. Seria fiziko-matematiceskih nauk. - 1986. - No 1. - S. 91-96.
14. Perminov A.V., Sulepova E.V. Vozdejstvie vysokocastotnyh vibracij na konvektivnoe dvizenie nen’utonovskoj zidkosti // Naucno-tehniceskie vedomosti SPbGPU. Fiziko-matematiceskie nauki. - 2011. - T. 3, No 129. - S. 169-175.
15. Gersuni G.Z., Zuhovickij E.M. O svobodnoj teplovoj konvekcii v vibracionnom pole v usloviah nevesomosti // DAN SSSR. - 1979. - T. 249, No 3. - S. 580-584.
16. Gersuni G.Z., Zuhovickij E.M. O konvektivnoj neustojcivosti zidkosti v vibracionnom pole v nevesomosti // MZG - 1981. - No 4. - S. 12-19. DOI
17. Zen’kovskaa S.M., Simonenko I.B. O vlianii vibracij vysokoj castoty na vozniknovenie konvekcii // MZG - 1966. - No 5. - S. 51-55. DOI
18. Gershuni G.Z., Lyubimov D.V. Thermal vibrational convection - N.Y.: Wiley, 1998. - 358 p.
19. Sarifulin A.N. Ustojcivost’ konvektivnogo dvizenia v vertikal’nom sloe pri nalicii vibracij. // MZG - 1983. - No 2. - S. 186-188. DOI
20. Sarifulin A.N. Volnovaa neustojcivost’ svobodnokonvektivnogo dvizenia v vibracionnom pole // Nestacionarnye processy v zidkostah i tverdyh telah. - Sverdlovsk: UNC AN SSSR, 1983. - s. 58-62.
21. Perminov A.V. Ustojcivost’ zestkogo sostoania obobsennoj n’utonovskoj zidkosti // MZG. - 2014. - T. 49, No 2. - S. 6-15. DOI
22. Tetel’min V.V., Azev V.A. Reologia nefti. Ucebnoe izdanie. - M.: Granica, 2009. - 256 s.
23. Lyubimov D.V., Lyubimova T.P., Morozov V.A. Software package for numerical investigation of linear stability of multi-dimensional flows // Bulletin of Perm University. Information Systems and Technologies. - 2001. - No. 5. - R. 74-81.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.