Convection excitation in a system of a binary solution layer and an inhomogeneous porous medium layer in the field of high-frequency vibrations
DOI:
https://doi.org/10.7242/1999-6691/2017.10.1.5Keywords:
convection, two-layer system, binary fluid, inhomogeneous porous medium, high-frequency vibrationsAbstract
We investigate convection excitation in a two-layer system of a horizontal binary solution layer and an inhomogeneous porous medium layer saturated with the solution in the gravity field and in the field of transverse high-frequency vibrations. It is believed that porosity of medium linearly depends on the vertical coordinate. Permeability is estimated by the Сarman-Kozeny relation for various values of a non-dimensional porosity gradient m_z. The averaging method is applied for a description of convection in the gravity field and the field of high-frequency vibrations. The linear stability problem for a mechanical equilibrium of fluid is solved numerically by the shooting method. The critical parameters corresponding to a threshold of convection excitation in the system heated either from below or above are found. When the system is heated from below, there is an abrupt change in the character of instability with the variation of porosity gradient or vibration intensity. It is shown that when porosity increases with depth at m_z = -0.2, the instability is due to the development of long-wave perturbations covering both fluid and porous layers. When porosity decreases with depth at m_z = 0.2, short-wave perturbations localized in the fluid layer are the most dangerous. For intermediate porosity gradients the critical Rayleigh-Darcy numbers determining the stability threshold of equilibrium with respect to long-wave and short-wave perturbations are of close values. Neutral curves are bimodal. When the system is heated from below, vertical vibrations effectively suppress convection in the fluid layer, so a transition from the most dangerous short-wave to long-wave perturbations occurs as vibration intensity grows. The most significant increase in the stability threshold is observed when porosity decreases with depth. When the system is heated from above, vibrations destabilize equilibrium in layers and lead to wavelength shortening for critical perturbations. Wavelength reduces monotonically. Its greatest change is fixed for the layers, whose porosity increases with depth.
Downloads
References
Nield D.A., Bejan A. Convection in porous media. - New York: Springer, 2013. - 778 p.
2. Gersuni G.Z., Zuhovickij E.M. Konvektivnaa ustojcivost’ neszimaemoj zidkosti. - M.: Nauka, 1972. - 392 s.
3. Gershuni G.Z., Lyubimov D.V. Thermal vibrational convection. - N.Y.: Wiley, 1998. - 358 p.
4. Demin V.A., Gershuni G.Z., Verkholantsev I.V. Mechanical quasi-equilibrium and thermovibrational convective instability in an inclined fluid layer // Int. J. Heat Mass Tran. - 1996. - Vol. 39, no. 9. - P. 1979-1991. DOI
5. Zen’kovskaa S.M. Dejstvie vysokocastotnoj vibracii na fil’tracionnuu konvekciu // PMTF. - 1992. - T. 33, No 5. - S. 83-88. DOI
6. Zen’kovskaa S.M., Rogovenko T.N. Fil’tracionnaa konvekcia v vysokocastotnom vibracionnom pole // PMTF. - 1999. - T. 40, No 3. - S. 22-29. DOI
7. Bardan G., Mojtabi A. On the Horton-Rogers-Lapwood convective instability with vertical vibration: Onset of convection // Phys. Fluids. - 2000. - Vol. 12, no. 11. - P. 2723-2731. DOI
8. Huppert H.E., Turner J.S. Double-diffusive convection // J. Fluid Mech. - 1981. - Vol. 106. - P. 299-329. DOI
9. Nield D.A. Onset of thermohaline convection in a porous medium // Water Resour. Res. - 1968. - Vol. 4, no. 3. - P. 553-560. DOI
10. Chen F., Chen C.F. Onset of finger convection in a horizontal porous layer underlying a fluid layer // J. Heat Transf. - 1988. - Vol. 110, no. 2. - P. 403-409. DOI
11. Hirata S.C., Goyeau B., Gobin D. Stability of thermosolutal natural convection in superposed fluid and porous layers // Transp. Porous. Med. - 2009. - Vol. 78, no. 3. - P. 525-536. DOI
12. Zhao P., Chen C.F. Stability analysis of double-diffusive convection in superposed fluid and porous layers using a one-equation model // Int. J. Heat Mass Tran. - 2001. - Vol. 44, no. 24. - P. 4625-4633. DOI
13. Jounet A., Bardan G. Onset of thermohaline convection in a rectangular porous cavity in the presence of vertical vibration // Phys. Fluids. - 2001. - Vol. 13. - P. 3234-3246. DOI
14. Bardan G., Knobloch E., Mojtabi A., Khallouf H. Natural doubly diffusive convection with vibration // Fluid Dyn. Res. - 2001. - Vol. 28, no. 3. - P. 159-187. DOI
15. Chen C.F., Chen F. Experimental study of directional solidification of aqueous ammonium chloride solution // J. Fluid Mech. - 1991. - Vol. 227. - P. 567-586. DOI
16. Tait S., Jaupart C. Compositional convection in a reactive crystalline mush and melt differentiation // J. Geophys. Res. - 1992. - Vol. 97, no. B5. - P. 6735-6756. DOI
17. Worster M.G. Natural convection in a mushy layer // J. Fluid Mech. - 1991. - Vol. 224. - P. 335-359. DOI
18. Worster M.G. Instabilities of the liquid and mushy regions during solidification of alloys // J. Fluid Mech. - 1992. - Vol. 237. - P. 649-669. DOI
19. Chen F., Lu J.W., Yang T.L. Convective instability in ammonium chloride solution directionally solidified from below // J. Fluid Mech. - 1994. - Vol. 276. - P. 163-187. DOI
20. Lubimov D.V., Muratov I.D. O konvektivnoj neustojcivosti v sloistoj sisteme // Gidrodinamika. - Perm’, 1977. - No 10. - S. 38-46.
21. Chen F., Chen C.F. Experimental investigation of convective stability in a superposed fluid and porous layer when heated from below // J. Fluid Mech. - 1989. - Vol. 207. - P. 311-321. DOI
22. Prasad V. Flow instabilities and heat transfer in fluid overlying horizontal porous layers // Exp. Therm. Fluid Sci. - 1993. - Vol. 6, no. 2. - P. 135-146. DOI
23. Lubimov D.V., Lubimova T.P., Muratov I.D. Konkurencia dlinnovolnovoj i korotkovolnovoj neustojcivosti v trehslojnoj sisteme // Gidrodinamika. - Perm’, 2002. - No 13. - S. 121-127.
24. Kolchanova E., Lyubimov D., Lyubimova T. The onset and nonlinear regimes of convection in a two-layer system of fluid and porous medium saturated by the fluid // Transp. Porous. Med. - 2013. - Vol. 97, no. 1. - P. 25-42. DOI
25. Chen F., Hsu L.H. Onset of thermal convection in an anisotropic and inhomogeneous porous layer underlying a fluid layer // J. Appl. Phys. - 1991. - Vol. 69. - P. 6289. DOI
26. Si-Cheng Z., Qiu-Sheng L., Henri N.-T., Bernard B. Gravity-driven instability in a liquid film overlying an inhomogeneous porous layer // Chinese Phys. Lett. - 2011. - Vol. 28, no. 2. - P. 024702. DOI
27. Chen F. Salt-finger instability in an anisotropic and inhomogeneous porous substrate underlying a fluid layer // J. Appl. Phys. - 1992. - Vol. 71. - P. 5222. DOI
28. Lubimov D.V., Lubimova T.P., Muratov I.D. Vlianie vibracij na vozbuzdenie konvekcii v dvuhslojnoj sisteme poristaa sreda - odnorodnaa zidkost’ // Gidrodinamika. - Perm’, 2004. - No 14. - S. 148-159.
29. Lubimov D.V., Lubimova T.P., Muratov I.D., Siskina E.A. Vlianie vibracij na vozniknovenie konvekcii v sisteme gorizontal’nogo sloa cistoj zidkosti i sloa poristoj sredy, nasysennoj zidkost’u // MZG. - 2008. - No 5. - S. 132-143. DOI
30. Kolcanova E.A., Lubimov D.V., Lubimova T.P. Vlianie effektivnoj pronicaemosti sredy na ustojcivost’ dvuhslojnoj sistemy <> v pole vibracij vysokoj castoty // Vycisl. meh. splos. sred. - 2012. - T. 5, No 2. - S. 225-232. DOI
31. Lyubimov D., Kolchanova E., Lyubimova T. Vibration effect on the nonlinear regimes of thermal convection in a two-layer system of fluid and saturated porous medium // Transp. Porous Med. - 2015. - Vol. 106, no. 2. - P. 237-257. DOI
32. Kolcanova E.A. Issledovanie ustojcivosti i nelinejnyh rezimov konvekcii v dvuhslojnyh sistemah zidkost’ - poristaa sreda, nasysennaa zidkost’u / Diss.. kand. fiz.-mat. nauk: 20.12.2012. - Perm’, IMSS UrO RAN, 2012. - 156 s.
33. Carman P.C. Fluid flow through granular beds // T. I. Chem. Eng.-Lond. - 1937. - Vol. 15. - P. 150-166.
34. Fand R.M., Kim B.Y.K., Lam A.C.C., Phan R.T. Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres // J. Fluids Eng. - 1987. - Vol. 109, no. 3. - P. 268-273. DOI
35. Katto Y., Matsuoka T. Criterion for the onset of convective flow in a fluid in a porous medium // Int. J. Heat Mass Tran. - 1967. - Vol. 10, no. 3. - P. 297-309. DOI
36. Gluhov A.F., Putin G.F. Eksperimental’noe issledovanie konvektivnyh struktur v nasysennoj zidkost’u poristoj srede vblizi poroga neustojcivosti mehaniceskogo ravnovesia // Gidrodinamika. - 1999. - No 12. - S. 104-119.
37. Gluhov A. F., Lubimov D. V., Putin G. F. Konvektivnye dvizenia v poristoj srede vblizi poroga neustojcivosti // DAN SSSR. - 1978. - T. 236, No 3. - C. 549-551.
38. Kozlov V.G., Ivanova A.A., Evesque P. Sand behavior in a cavity with incompressible liquid under vertical vibrations // Europhys. Lett. - 1998. - Vol. 42, no. 4. - P. 413-418. DOI
39. Peppin S.S.L., Huppert H.E., Worster M.G. Steady-state solidification of aqueous ammonium chloride // J. Fluid Mech. - 2008. - Vol. 599. - P. 465-476. DOI
40. Bejan A. Convection heat transfer. - Wiley: New York, 2013.
41. Lobov N.I., Lubimov D.V., Lubimova T.P. Cislennye metody resenia zadac teorii gidrodinamiceskoj ustojcivosti: Uceb. posobie. - Perm’: Izd-vo PGU, 2004. - 101 s.
42. Voevodin V.V. Vycislitel’nye osnovy linejnoj algebry. - M.: Nauka, 1977. - 304 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.