Calculation of the electrophysical properties of dispersed-filled composites
DOI:
https://doi.org/10.7242/1999-6691/2017.10.1.1Keywords:
numerical calculation of effective characteristics, electrophysical properties, dispersed-filled material, composite material, dielectric constant, electrical conductivityAbstract
The properties of polymeric materials can be relatively easily changed during structural modifications by introducing fillers of different nature. Meanwhile, the chemical nature of the polymeric matrix of the resulting composition remains unchanged, whereas the thermophysical and electrophysical properties of the composition, including its strain-strength characteristics, can be markedly different from the properties of the matrix. This paper considers the method of determining the effective electrophysical characteristics of inhomogeneous materials when different material phases have properties that differ by several orders of magnitude. The compositions of polymer matrices filled with electrically conducting powder materials are investigated. Electrostatic and electrical conductivity boundary-value problems for the cell periodicity of a composite material are formulated using the basic equations of electrophysics. Partial differential equations used in the mathematical model of the material in an electric field are solved by the finite element method (FEM). Analysis of the results makes it possible to evaluate the electric potential and the electric field intensity in the composite. Such effective electrophysical characteristics of the composite material as dielectric constant and specific electric conductivity are obtained by comparing the integral characteristics (electromagnetic field energy, heat loss power) of the periodicity cells of a composite and a hypothetical homogeneous material. As an example, the electrophysical properties of several composites, in particular a composite based on polyethelene (matrix) filled with metal powder (reinforced particles), are considered. In addition, a comparison of the numerical and experimental results for the silicone-based compositions filled with graphite and copper is performed.
Downloads
References
Luksin B.A., Panin S.V., Bockareva S.A., Kornienko L.A., Grisaeva N.U., Luksin P.A., Matolygina N.U., Reutov A.I. Komp’uternoe modelirovanie i konstruirovanie napolnennyh kompozicij. - Novosibirsk: Izd-vo SO RAN, 2015. - 264 s.
2. Bochkareva S.A., Grishaeva N.Yu., Lyukshin P.A., Lyukshin B.A. Determination of the thermal conductivity coefficient of inhomogeneous media // AIP Conf. Proc. - 2014. - Vol. 1623. - P. 71-74. DOI
3. Luksin P.A., Luksin B.A., Matolygina N.U., Panin S.V. Opredelenie effektivnyh teplofiziceskih harakteristik kompozicionnogo materiala // Fiz. mezomeh. - 2008. - T. 11, No 5. - S. 103-110.
4. Maksvell D.K. Izbrannye socinenia po teorii elektromagnitnogo pola. - M.: Gostehizdat, 1952. - 688 s.
5. Bruggeman D.A.G. Berechnung verschiedener physikalischer Konstanten von heterogener Substanzen. I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen // Annalen der Physik. - 1935. - Vol. 416, no. 7. - P. 636-664. DOI
6. Weiglhofer W.S., Lakhtakia A., Michel B. Maxwell Garnett and Bruggeman formalisms for a particulate composite with bianisotropic host medium // Microw. Opt. Techn. Let. - 1997. - Vol. 15, no. 4. - P. 263-266. DOI
7. Stauffer D., Aharony A. Introduction to percolation theory. - London: Taylor & Francis, 2003. - 181 r.
8. Kirkpatrick S. Percolation and conduction // Rev. Mod. Phys. - 1973. - Vol. 45, no. 4. - P. 574-588. DOI
9. Landauer R. Electrical conductivity in inhomogeneous media // AIP Conf. Proc. - 1978. - Vol. 40. - P. 2-45. DOI
10. Bernasconi J. Conduction in anisotropic disordered systems: Effective-medium theory // Phys. Rev. B. - 1974. - Vol. 9, no. 10. - P. 4575-4579. DOI
11. Stroud D. Generalized effective-medium approach to the conductivity of an inhomogeneous material // Phys. Rev. B. - 1975. - Vol. 12, no. 8. - P. 3368-3373. DOI
12. Fokin A.G. Dielektriceskaa pronicaemost’ smesej // ZTF. - 1971. - T. 41, No 6. - S. 1073-1079.
13. Balagurov B.A. O vlianii formy vklucenij na porogi protekania dvumernyh modelej kompozitov // ZTF. - 2012. - T. 82, No 8. - C. 11-17. (URL: http://journals.ioffe.ru/articles/viewPDF/10668). DOI
14. Akovleva E.N., Akovlev V.B., Lavrov I.V. Sravnitel’nyj analiz metodov dla vycislenia dinamiceskih harakteristik kompozicionnyh dielektrikov // Mezdunarodnaa naucno-tehniceskaa konferencia <>, Materialy konferencii, Moskva, 3-7 dekabra 2012 g. - M: MIREA, 2012. - C. 3. - S. 93-96.
15. Snarskij A.A., Zenirovskij M.I. Perkolacionnye effekty v termoelektriceskih neuporadocennyh dvuhfaznyh sredah (kriticeskij obzor) // Termoelektricestvo. - 2007. - No 3. - S. 65-81.
16. Trofimov N.N., Kanovic M.Z., Kartasov E.M., Natrusov V.I., Ponomarenko A.T., Sevcenko V.G., Sokolov V.I., Simonov-Emel’anov I.D. Fizika kompozicionnyh materialov: v 2 tomah. - M.: Mir, 2005. - T. 1, 2. - 456 s.
17. Aharoni S.M. Electrical resistivity of a composite of conducting particles in an insulating matrix // J. Appl. Phys. -1972. - Vol. 43. - P. 2463-2465. DOI
18. Davidson A., Tinkham M. Phenomenological equations for the electrical conductivity of microscopically inhomogeneous materials // Phys. Rev. B. -1976. - Vol. 13, no. 8. - R. 3261-3267. DOI
19. Zhang M.Q., Xu J.R., Zeng H.M., Huo Q., Zhang Z.Y, Yun F.C., Friedrich K. Fractal approach to the critical filler volume fraction of an electrically conductive polymer composite // J. Mater. Sci. - 1995. - Vol. 30, no. 17. - P. 4226-4232. DOI
20. Xie N., Shao W, Feng L., Lv L., Zhen L. Fractal analysis of disordered conductor-insulator composites with different conductor backbone structures near percolation threshold // J. Phys. Chem. C. - 2012. - Vol. 116, no. 36. - P. 19517-19525. DOI
21. Susko M.A., Kris’kiv S.K. Metod kompaktnyh grupp v teorii dielektriceskoj pronicaemosti geterogennyh sistem // ZTF. - 2009. - T. 79, No 3. - S. 97-101. DOI
22. Wang M., Pan N. Predictions of effective physical properties of complex multiphase materials // Mater. Sci. Rep. - 2008. - Vol. 63, no. 1. - P. 1-30. DOI
23. Tuncer E., Gubanski S.M., Nettelblad B. Dielectric relaxation in dielectric mixtures: Application of the finite element method and its comparison with dielectric mixture formulas // J. Appl. Phys. - 2001. - Vol. 89, no. 12. - P. 8092-8100. DOI
24. Feng L., Xie N., Zhong J. Carbon nanofibers and their composites: a review of synthesizing, properties and applications // Materials. - 2014. - Vol. 7, no. 5. - P. 3919-3945. DOI
25. Arznikov A.K., Galanin M.P., Feoktistova A.V. Matematiceskaa model’ dla rasceta elektrofiziceskih svojstv nanokompozita s tunnel’noj elektroprovodnost’u i ee cislennaa realizacia: Prepr. / IPM im. M.V. Keldysa. - M., 2013. - No 96. - 30 s. (URL: http://library.keldysh.ru/preprint.asp?id=2013-96).
26. Baras L.U., Halatnikov I.M. Effektivnaa provodimost’ dvumernyh zamosenij ploskosti: sravnenie analiticeskih i cislennyh rezul’tatov // Vycislitel’nye tehnologii v estestvennyh naukah. Metody superkomp’uternogo modelirovania: Sb. trudov, 1-3 oktabra 2014 g., Tarusa, Rossia / Pod red. R.R. Nazirova, L.N. Sura. - M.: IKI RAN, 2014. - C. 18-24.
27. Dimitrienko U.I., Sokolov A.P., Markevic M.N. Modelirovanie dielektriceskih harakteristik kompozicionnyh materialov na osnove metoda asimptoticeskogo osrednenia // Nauka i obrazovanie. - M.: MGTU im. N.E. Baumana, 2013. - No 1. - S. 49-64. DOI
28. Atabekov G.I., Kupalan S.D., Timofeev A.B. i dr. Teoreticeskie osnovy elektrotehniki: Uceb. dla studentov vtuzov. V 3-h castah. - M.: Energia, 1979. - C. 2, 3. - 432 s.
29. Nejman L.R., Demircan K.S. Teoreticeskie osnovy elektrotehniki. - L.: Energia, 1975. - T. 2. - 407 s.
30. Akovlev V.I. Klassiceskaa elektrodinamika: Uceb. posobie. - Novosibirsk: Izd-vo NGU, 2003. - 267 s.
31. Segerlind L. Primenenie metoda konecnyh elementov. - M.: Mir, 1979. - 392 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.