Континуальные модели в динамике гранулированных сред. Обзор
DOI:
https://doi.org/10.7242/1999-6691/2015.8.1.4Ключевые слова:
гранулированная среда, уравнения состояния, определяющие соотношения, динамикаАннотация
Анализируются математические модели и уравнения состояния, применяемые при решении динамических задач механики гранулированных сред. Рассматриваются упругие, гипоупругие, гиперупругие, упругопластические и гидродинамические модели. В рамках гиперупругих моделей выделяются обобщенные модели, в которых путем введения в упругий потенциал дополнительных множителей удается моделировать образование гистерезисных петель в условиях циклических нагружений (модифицированная модель Арруда-Бойс и некоторые другие гиперупругие модели). Отмечается, что за счет введения в модифицированные модели гипоупругости механизма переключения также становится возможным описание гистерезисных петель в условиях циклических нагружений. Подвергаются разбору упругопластические модели, основанные на концепции одной или нескольких поверхностей пластичности, а также модели с континуально распределенными поверхностями пластичности (микропластичность). Обсуждаются некоторые современные упругопластические модели без поверхностей пластичности (гипопластичность, бародезия). Основное внимание уделяется упругопластическим моделям с изотропным упрочнением. Делается акцент на те упругопластические модели и условия нагружения, которые позволяют учитывать эффекты невырождения гистерезисных петель.
Скачивания
Библиографические ссылки
Адамов А.А., Матвеенко В.П., Труфанов Н.А., Шардаков И.Н. Методы прикладной вязкоупругости. - Екатеринбург: УрО РАН, 2003. - 412 с.
2. Васин Р.А. Определяющие соотношения теории пластичности // Итоги науки и техники. Серия: Механика деформируемого твердого тела. - М.: ВИНИТИ, 1990. - Т. 21. - С. 3-75.
3. Ивлев Д.Д. Теория идеальной пластичности. - М.: Наука, 1966. - 232 с.
4. Ильюшин А.А. Пластичность. Основы общей математической теории пластичности. - М.: Изд-во АН СССР, 1963. - 271 с.
5. Качанов Л.М. Основы теории пластичности. - М.: Наука, 1969. - 420 с.
6. Клюшников В.Д. Математическая теория пластичности. - М.: Изд-во Моск. ун-та, 1979. - 208 с.
7. Николаевский В.Н. Собрание трудов. Геомеханика. Том 1. Разрушение и дилатансия. Нефть и газ. - М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2010. - 640 с.
8. Поздеев А.А., Трусов П.В., Няшин Ю.И. Большие упругопластические деформации: теория, алгоритмы, приложения. - М.: Наука, 1986. - 232 с.
9. Работнов Ю.Н. Элементы наследственной механики твердых тел. - М.: Наука, 1977. - 384 с.
10. Седов Л.И. Механика сплошной среды. - М.: Наука, 1970. - Том 2. - 568 с.
11. Truesdell C., Toupin R. The classical field theories // Handbuch der Physik, vol. III/1 / Ed. by S. Flügge. - Springer, 1960.
12. Ericksen J.L. Tensor Fields. Handbuch der Physik, vol. III / 1 / Ed. by S. Flügge. - Springer, 1960.
13. Wang C.-C., Truesdell C. Introduction to rational elasticity. - Springer, 1973.
14. Jackson R. Some mathematical and physical aspects of continuum models for the motion of granular materials // Theory of dispersed multiphase flow / Ed. by R.E. Meyer. - Academic Press, San Diego, 1983. - Pp. 291-337.
15. Nesterenko V.F. Dynamics of heterogeneous materials. - Springer-Verlag, New York, 2001.
16. Nesterenko V.F., Herbold E.B., Benson D.J., Jeonghoon Kim J., Daraio C. Strongly nonlinear behavior of granular chains and granular composites // J. Acoust. Soc. Am. - 2008. - Vol. 123, no. 5. - P. 3271. DOI
17. Herbold E.B., Nesterenko V.F., Benson D.J., Cai J., Vecchio K.S., Jiang F., Addiss J.W., Walley S.M., Proud W.G. Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene-Al-W granular composite materials // J. Appl. Phys. - 2008. - Vol. 104. - 103903. DOI
18. Sen S., Hong J., Bang J., Avalos E., Doney R. Solitary waves in the granular chain // Phys. Rep. - 2008. - Vol. 462, no. 2. - P. 21-66. DOI
19. Molinari A., Daraio Ch. Stationary shocks in periodic highly nonlinear granular chains // Phys. Rev. - 2009. - Vol. E 80. - 056602. DOI
20. Sun J., Sundaresan S. Radial hopper flow prediction using a constitutive model with microstructure evolution // Powder Technol. - 2013. - Vol. 242. - P. 81-85. DOI
21. Ломакин Е.В., Работнов Ю.Н. Соотношения теории упругости для изотропного разномодульного тела // МТТ. - 1978. - № 6. - С. 29-34.
22. Ломакин Е.В. Нелинейные деформирования материалов, сопротивление которых зависит от вида напряженного состояния // МТТ. - 1980. - № 4. - С. 92-99.
23. Маслов В.П., Мосолов П.П. Общая теория решений уравнений движения разномодульной упругой среды // ПММ. - 1985. - Т. 49. - С. 419-437.
24. Volokh K.Y. Hyperelasticity with softening for modeling materials failure // J. Mech. Phys. Solids. - 2007. - Vol. 55, no. 10. - P. 2237-2264. DOI
25. Kuznetsov S.V. Direct boundary integral equation method in the theory of elasticity // Quart. Appl. Math. - 2005. - Vol. 63. - P. 455-467.
26. Norris A.N., Johnson D.L. Nonlinear elasticity of granular media // J. Appl. Mech. - 1997. - Vol. 64, no. 1. - P. 39-49. DOI
27. Coste C., Gilles B. On the validity of Hertz contact law for granular material acoustics // Eur. Phys. J. B. - 1999. - Vol. 7, no. 1. - P. 155-168. DOI
28. Амбарцумян С.А., Хачатрян А.А. Основные уравнения теории упругости для материалов, разносопротивляющихся растяжению и сжатию // Инженерный журнал. МТТ. - 1966. - № 2. - С. 44-53.
29. Амбарцумян С.А. Разномодульная теория упругости. - М.: Наука, 1982. - 320 c.
30. Truesdell C. The simplest rate theory of pure elasticity // Commun. Pur. Appl. Math. - 1955. - Vol. 8, no. 1. - P. 123-132. DOI
31. Truesdell C. Hypo-elasticity // J. Rat. Mech. Anal. - 1955. - Vol. 4. - P. 83-133, p. 1019-1020.
32. Truesdell C. Remarks on hypo-elasticity // J. Res. Nat. Bur. Stand. - 1963. - Vol. 67B, no. 3. - P. 141-143. DOI
33. Thomas T.Y. Combined elastic and Prandtl-Reuss stress-strain relations // Proc. Nat. Acad. Sci. USA. - 1955. - Vol. 41. - P. 720-726. DOI
34. Green A.E. Hypo-elasticity and plasticity // Proc. Roy. Soc. London. - 1956. - Vol. A234. - P. 46-59. DOI
35. Gurtin M.E. On the hypoelastic formulation of plasticity using the past maximum of stress // J. Appl. Mech. - 1983. - Vol. 50, no. 4a. - P. 894-896. DOI
36. Bernstein B., Ericksen J.L. Work functions in hypo-elasticity // Arch. Ration. Mech. An. - 1958. - Vol. 1, no. 1. - P. 396-409. DOI
37. Varley E., Dunwoody J. The effect of non-linearity at an acceleration wave // J. Mech. Phys. Solids. - 1965. - Vol. 13, no. 1. - P. 17-28. DOI
38. Nariboli G.A., Juneja B.L. Wave propagation in an initially stressed hypo-elastic medium // Int. J. Nonlinear Mech. - 1971. - Vol. 6, no. 1. - P. 13-25. DOI
39. Chandrasekharaiah D.S. On hypo-elastic transverse surface waves in an internal stratum // Appl. Sci. Res. - 1976. - Vol. 32, no. 4. - P. 347-353. DOI
40. Chandrasekharaiah D.S. On Love waves in a stratified hypoelastic solid with material boundary // Proc. Indian Acad. Sci., Sec. A. - 1977. - Vol. 86, no. 4. - P. 383-391. DOI
41. Szabó L., Balla M. Comparison of some stress rates // Int. J. Solids Struct. - 1989. - Vol. 25, no. 3. - P. 279-297. DOI
42. Kleiber M. On errors inherent in commonly accepted rate forms of the elastic constitutive law // Arch. Mech. - 1986. - Vol. 38. - P. 271-279.
43. Simo J.C., Pister K.S. Remarks on rate constitutive equations for finite deformation problems: computational implications // Comput. Method. Appl. M. - 1984. - Vol. 46, no. 2. - P. 201-215. DOI
44. Mullins L. Softening of rubber by deformation // Rubber Chem. Technol. - 1969. - Vol. 42, no. 1. - P. 339-362. DOI
45. Ogden R.W., Roxburgh D.G. A pseudo-elastic model for the Mullins effect in filled rubber // Proc. Roy. Soc. Lond. A. - 1999. - Vol. 455, no. 1988. - P. 2861-2877. DOI
46. Ogden R.W. Pseudo-elasticity and stress softening // Nonlinear elasticity: Theory and applications / Ed. by Y.B. Fu, R.W. Ogden. - Cambridge: Cambridge University Press, 2001. - P. 491-522.
47. Horgan C.O., Saccomandi G. Phenomenological hyperelastic strain-stiffening constitutive models for rubber // Rubber Chem. Technol. - 2006. - Vol. 79, no. 1. - P. 152-169. DOI
48. De Tommasi D. Puglisi G., Saccomandi G. A micromechanics-based model for the Mullins effect // J. Rheol. - 2006. - Vol. 50. - P. 495-512. DOI
49. Arruda E.M., Boyce M.C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials // J. Mech. Phys. Solids. - 1993. - Vol. 41, no. 2. - P. 389-412. DOI
50. Boyce M.C., Yeh O., Socrate S., Kear K., Shaw K. Micromechanics of cyclic softening in thermoplastic vulcanizates // J. Mech. Phys. Solids. - 2001. - Vol. 49, no. 6. - P. 1343-1360. DOI
51. Cho H., Renaud G.R., Boyce M.C. Constitutive modeling of the rate-dependent resilient and dissipative large deformation behavior of a segmented copolymer polyuria // Soft Matter. - 2013. - Vol. 9. - P. 6319-6330. DOI
52. Bruhns O.T. The Prandtl-Reuss equations revisited // ZAMM J. Appl. Math. Mech. - 2014. - Vol. 94, no. 3. - P. 187-202. DOI
53. Rakić D., Živković M., Slavković R., Kojić M. Stress integration for the Drucker-Prager material model without hardening using the incremental plasticity theory // Journal of the Serbian Society for Computational Mechanics. - 2008. - Vol. 2, no. 1. - P. 80-89.
54. Kukudzhanov V.N. Numerical continuum mechanics. De Gruyter Studies in Mathematical Physics 15. - Berlin: De Gruyter, 2013.
55. Belytschko T., Liu W.K., Moran B., Elkhodary Kh.I. Nonlinear finite elements for continua and structures. - London: Wiley, 2014.
56. Dafalias Y.F., Popov E.P. A model of nonlinearly hardening materials for complex loading // Acta Mech. - 1975. - Vol. 21, no. 3. - P. 173-192. DOI
57. Chaboche J.L. Constitutive equation for cyclic plasticity and cyclic viscoplasticity // Int. J. Plasticity. - 1989. - Vol. 5, no. 3. - P. 247-302. DOI
58. Chaboche J., Cailletaud G. Integration methods for complex plastic constitutive equations // Comput. Method. Appl. M. - 1996. - Vol. 133, no. 1-2. - P. 125-155. DOI
59. Wallin M., Ristinmaa M. Deformation gradient based kinematic hardening model // Int. J. Plasticity. - 2005. - Vol. 21, no. 10. - P. 2025-2050. DOI
60. Pietryga M.P., Vladimirov I.N., Reese S. A finite deformation model for evolving flow anisotropy with distortional hardening including experimental validation // Mech. Mater. - 2012. - Vol. 44. - P. 163-173. DOI
61. Menétrey Ph., Willam K.J. Triaxial failure criterion for concrete and its generalization // ACI Struct. J. - 1995. - Vol. 92. - P. 311-318.
62. Rajchenbach J. Flow in powders: From discrete avalanches to continuum regime // Phys. Rev. Lett. - 1990. - Vol. 65. - P. 2221-2224. DOI
63. Nedderman R.M. Statics and kinematics of granular materials. - Cambridge University Press, 2005.
64. Borja R.I., Sama K.M., Sanz P.F. On the numerical integration of three-invariant elastoplastic constitutive models // Comput. Method. Appl. M. - 2003. - Vol. 192, no. 9-10. - P. 1227-1258. DOI
65. Rycroft Ch.H., Kamrin K., Bazant M.Z. Assessing continuum postulates in simulations of granular flow // J. Mech. Phys. Solids. - 2009. - Vol. 57, no. 5. - P. 828-839. DOI
66. Krenk S. Characteristic state plasticity for granular materials: Part I: Basic theory // Int. J. Solids Struct. - 2000. - Vol. 37, no. 43. - P. 6343-6360. DOI
67. Khoei A.R., Azami A.R. A single cone-cap plasticity with an isotropic hardening rule for powder materials // Int. J. Mech. Sci. - 2005. - Vol. 47, no. 1. - P. 94-109. DOI
68. Potts D.M., Gens A. The effect of the plastic potential in boundary value problems involving plane strain deformation // Int. J. Numer. Anal. Met. - 1984. - Vol. 8, no. 3. - P. 259-286. DOI
69. Krenk S. A generalized Cam-Clay model // IUTAM Symposium on Theoretical and Numerical Methods in Continuum Mechanics of Porous Materials. Solid Mechanics and Its Applications. - 2002. - Vol. 87. - P. 33-38. DOI
70. Borja R.I. Cam-Clay plasticity. Part V: A mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media // Comput. Method. Appl. M. - 2004. - Vol. 193, no. 48-51. - P. 5301-5338. DOI
71. Khoei A.R., Azami A.R. A single cone-cap plasticity with an isotropic hardening rule for powder materials // Int. J. Mech. Sci. - 2005, vol. 47, no. 1. - P. 94-109. DOI
72. Das A., Nguyen G.D., Einav I. Compaction bands due to grain crushing in porous rocks: A theoretical approach based on breakage mechanics // J. Geophys. Res.-Sol. Ea. - 2011. - Vol. 116, no. B8. - P. 1-14. DOI
73. Das A., Nguyen G.D., Einav I. The propagation of compaction bands in porous rocks based on breakage mechanics // J. Geophys. Res. -Sol. Ea. - 2012. - Vol. 118, no. 5. - P. 2049-2066. DOI
74. Lade P., Yamamuro J., Bopp P. Significance of particle crushing in granular materials // J. Geotech. Eng-ASCE. - 1996. - Vol. 122, no. 4. - P. 309-316. DOI
75. Carter J.P., Booker J.R., Wroth C.P. A critical state soil model for cyclic loading // Soil mechanics - transient and cyclic loads / Ed. by G.N. Pande, O.L. Zienkiewicz. - London: Wiley, 1982. - P. 219-252.
76. Ишлинский А.Ю. Некоторые применения статистики к описанию законов деформирования тел // Изв. АН СССР. ОТН. - 1944. - № 9. - С. 583-590.
77. Пальмов В.А. Колебания упруго-пластических тел. - М.: Наука, 1976. - 328 с.
78. Пальмов В.А. Колебания упруго-пластических тел // МТТ. - 1971. - № 4. - С. 122-130.
79. Кадашевич Ю.И., Новожилов В.В. Об учете микронапряжений в теории пластичности // МТТ. - 1968. - № 3. - С. 82-91.
80. Кадашевич Ю.И., Новожилов В.В. О влиянии начальных микронапряжений на макроскопическую деформацию поликристаллов // ПММ. - 1968. - Т. 32, № 5. - С. 908-922.
81. Давиденков Н.Н. О рассеянии энергии при вибрациях // ЖТФ. - 1938. - Т. 8, № 6. - С. 483-499.
82. Karnopp D., Scharton T.D. Plastic deformation in random vibration // J. Acoust. Soc. Am. - 1966. - Vol. 39, no. 6. - P. 1154-1161. DOI
83. Kolymbas D. A generalized hypoelastic constitutive law // Proc. of the 11th International Conference on Soil Mechanics and Foundation Engineering, 12-16 August 1985, San Francisco. - Vol. 5. - P. 2626.
84. Gudehus G. A comprehensive constitutive equation for granular materials // Soils and Foundations. - 1996. - Vol. 36, no. 1. - P. 1-12. DOI
85. Wolffersdorff von P.-A. A hypoplastic relation for granular materials with a predefined limit state surface // Mech. Cohes.-Frict. Mat. - 1996. - Vol. 1, no. 3. - P. 251-271. DOI
86. Kolymbas D. Barodesy: The next generation of hypoplastic constitutive models for soils // Computational Engineering / Ed. by G. Hofstetter. - Springer International Publishing Switzerland, 2014. - P. 43-58. DOI
87. Kolymbas D. Barodesy as a novel hypoplastic constitutive theory based on the asymptotic behaviour of sand // Geotechnik. - 2012. - Vol. 35, no. 3. - P. 187-197. DOI
88. Jaeger H.M., Nagel S.R., Behringer R.P. Granular solids, liquids, and gases // Rev. Mod. Phys. - 1996. - Vol. 68. - P. 1259-1273. DOI
89. Midi G.D.R. On dense granular flows // Eur. Phys. J. E. - 2004. - Vol. 14, no. 4. - P. 341-365. DOI
90. Rycroft C.H., Kamrin K., Bazant M.Z. Assessing continuum postulates in simulations of granular flow // J. Mech. Phys. Solids. - 2009. - Vol. 57, no. 5. - P. 828-839. DOI
91. Khoei A.R., Mohammadnejad T. Numerical modeling of multiphase fluid flow in deforming porous media: A comparison between two- and three-phase models for seismic analysis of earth and rockfill dams // Comput. Geotech. - 2011. - Vol. 38, no. 2. - P. 142-166. DOI
92. Hashiguchi K. Mechanical requirements and structures of cyclic plasticity models // Int. J. Plasticity. - 1993. - Vol. 9, no. 6. - P. 721-748. DOI
93. Halama R. A modification of AbdelKarim-Ohno model for ratcheting simulations // Technical Gazette. - 2008. - Vol. 15, no. 3. - P. 3-9.
94. Vincent L. Calloch S., Marquis D. A general cyclic plasticity model taking into account yield surface distortion for multiaxial ratcheting // Int. J. Plasticity. - 2004. - Vol. 20, no. 10. - P.1817-1850. DOI
95. Numerical models in geomechanics // Proc. of the 6th International Symposium Numog VI, Montreal, Canada, 2-4 July 1997. - 106 p.
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2015 Вычислительная механика сплошных сред
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.