Каскадная модель турбулентной вязкости для пограничного слоя

Авторы

  • Дмитрий Григорьевич Селуков Институт механики сплошных сред УрО РАН
  • Родион Александрович Степанов Институт механики сплошных сред УрО РАН; Пермский национальный исследовательский политехнический университет

DOI:

https://doi.org/10.7242/1999-6691/2022.15.3.28

Ключевые слова:

численное моделирование турбулентности, каскадные модели, пограничный слой

Аннотация

Задача численного моделирования развитых турбулентных течений обычно сводится к формулировке того или иного замыкания уравнений среднего поля. Универсальное решение этого вопроса вряд ли существует, тем не менее разработка подхода исходя из общих принципов остается актуальной темой исследований. В данной статье предлагается модель, в которой турбулентная вязкость описывается через характеристики пульсаций поля скорости, рассчитываемые на основе каскадных моделей турбулентности. Эти модели корректно воспроизводят распределение энергии турбулентности по масштабам и спектральные потоки энергии для гидродинамических течений различной физической природы. При построении каскадных моделей используются такие свойства полной системы уравнений, как симметрия и соблюдение законов сохранения, а также приближение однородной и изотропной турбулентности. Феноменологические соотношения, предполагающие конкретные спектральные законы, не привлекаются. В  разработанном подходе сделана попытка определить турбулентную вязкость при сохранении универсальности и гибкости каскадных моделей. Выполненная математическая постановка является совокупностью моделей крупного (уравнение среднего поля), мелкого (каскадная модель) масштабов и замыкающих соотношений. В модели осуществлено энергетическое сопряжение переменных различных масштабов, которое обеспечивает нелинейную связь полей разного уровня. Учет влияния среднего поля на  распределение энергии турбулентных пульсаций – отличительная черта предлагаемого подхода. Получены численные решения для  течения в плоском бесконечном канале при различных числах Рейнольдса. Показано, что результаты согласуются с современными представлениями о логарифмическом профиле поля скорости в пристеночном слое. Обоснован физический смысл параметров модели. Найдены асимптотические решения, качественно соответствующие модели Прандтля.

Скачивания

Данные скачивания пока недоступны.

Биографии авторов

Дмитрий Григорьевич Селуков, Институт механики сплошных сред УрО РАН

асп.

Родион Александрович Степанов, Институт механики сплошных сред УрО РАН; Пермский национальный исследовательский политехнический университет

дфмн, внс

Библиографические ссылки

1. Фрик П.Г. Турбулентность: подходы и модели. М.-Ижевск: Регулярная и хаотическая динамика, 2010. 332 с.
2. Tazraei P., Girimaji S.S. Scale-resolving simulations of turbulence: Equilibrium boundary layer analysis leading to near-wall closure modeling // Phys. Rev. Fluids. 2019. Vol. 4. 104607. http://doi.org/10.1103/PhysRevFluids.4.104607
3. Duraisamy K., Iaccarino G., Xiao H. Turbulence modeling in the age of data // Annu. Rev. Fluid Mech. 2019. Vol. 51. P. 357-377. http://doi.org/10.1146/annurev-fluid-010518-040547
4. Yokoi N. Turbulence, transport and reconnection // Topics in magnetohydrodynamic topology, reconnection and stability theory / Ed. D. MacTaggart, A. Hillier. Springer, 2020. P. 177-265. http://doi.org/10.1007/978-3-030-16343-3_6
5. Обухов А.М. О некоторых общих характеристиках уравнений динамики атмосферы // Изв. АН СССР. Физика атмосферы и океана. 1971. Т. 7, № 7. С. 695-704.
6. Lorenz E.N. Low order models representing realizations of turbulence // J. Fluid Mech. 1972. Vol. 55. P. 545-563. http://doi.org/10.1017/S0022112072002009
7. Гледзер Е.Б. Система гидродинамического типа, допускающая два квадратичных интеграла движения // ДАН СССР. 1973. T. 209, № 5. C. 1046-1048.
8. Деснянский В.Н., Новиков Е.А. Эволюция спектров турбулентности к режиму подобия // Изв. АН СССР. Физика атмосферы и океана. 1974. Т. 10, № 2. С. 127-136.
9. Siggia E.D. Origin of intermittency in fully developed turbulence // Phys. Rev. A. 1977. Vol. 15. P. 1730-1750. http://doi.org/10.1103/PhysRevA.15.1730
10. Yamada M., Ohkitani K. Lyapunov spectrum of a chaotic model of three-dimensional turbulence // J. Phys. Soc. Jpn. 1987. Vol. 56. P. 4210-4213. http://doi.org/10.1143/JPSJ.56.4210
11. L’vov V.S., Podivilov E., Pomlyalov A., Procaccia I., Vandembroucq D. Improved shell model of turbulence // Phys. Rev. E. 1998. Vol. 58. P. 1811-1822. http://doi.org/10.1103/PhysRevE.58.1811
12. L’vov V.S., Podivilov E., Procaccia I. Hamiltonian structure of the Sabra shell model of turbulence: Exact calculation of an anomalous scaling exponent // EPL. 1999. Vol. 46. P. 609-612. http://doi.org/10.1209/epl/i1999-00307-8
13. Ditlevsen P.D. Symmetries, invariants, and cascades in a shell model of turbulence // Phys. Rev. E. 2000. Vol. 62. P. 484-489. http://doi.org/10.1103/PhysRevE.62.484
14. Benzi R., Biferale L., Tripiccione R., Trovatore E. (1+1)-dimensional turbulence // Phys. Fluids. 1997. Vol. 9. P. 2355-2363. http://doi.org/10.1063/1.869356
15. Frisch U. Turbulence. Cambridge University Press, 1995. 296 p.
16. Bohr T., Jensen M.H., Vulpiani A., Paladin G. Dynamical systems approach to turbulence. Cambridge University Press, 1998. 350 p.
17. Pope S.B. Turbulent flows. Cambridge University Press, 2000. 771 p.
18. Biferale L. Shell models of energy cascade in turbulence // Ann. Rev. Fluid Mech. 2003. Vol. 35. P. 441-468. http://doi.org/10.1146/annurev.fluid.35.101101.161122
19. Plunian F., Stepanov R., Frick P. Shell models of magnetohydrodynamic turbulence // Phys. Rep. 2013. Vol. 523. P. 1-60. http://doi.org/10.1016/j.physrep.2012.09.001
20. Frick P., Reshetnyak M., Sokoloff D. Combined grid-shell approach for convection in a rotating spherical layer // EPL. 2002. Vol. 59. P. 212-217. http://doi.org/10.1209/epl/i2002-00228-6
21. Фрик П.Г., Решетняк М.Ю., Соколов Д.Д. Каскадные модели турбулентности для жидкого ядра Земли // ДАН. 2002. Т. 387, № 2. С. 253-257.
22. Решетняк М.Ю., Штеффен Б. Каскадные модели в быстровращающихся динамо-системах // Выч. мет. программирование. 2006. T. 7, № 1. C. 85-92.
23. Frick P., Stepanov R., Sokoloff D. Large- and small-scale interactions and quenching in an α2-dynamo // Phys. Rev. E. 2006. Vol. 74. 066310. http://doi.org/10.1103/PhysRevE.74.066310
24. Степанов Р.А., Фрик П.Г., Соколов Д.Д. Сопряжение уравнений динамо средних полей и каскадной модели турбулентности на примере задачи галактического динамо // Вычисл. мех. сплош. сред. 2008. T. 1, № 4. C. 97-108. http://doi.org/10.7242/1999-6691/2008.1.4.43
25. L’vov V.S., Pomyalov A., Tiberkevich V. Multizone shell model for turbulent wall bounded flows // Phys. Rev. E. 2003. Vol. 68. 046308. http://doi.org/10.1103/PhysRevE.68.046308
26. Plunian F., Teimurazov A., Stepanov R., Verma M.K. Inverse cascade of energy in helical turbulence // J. Fluid Mech. 2020. Vol. 895. A13. http://doi.org/10.1017/jfm.2020.307
27. Sadhukhan S., Samuel R., Plunian F., Stepanov R., Samtaney R., Verma M.K. Enstrophy transfers in helical turbulence // Phys. Rev. Fluids. 2019. Vol. 4. 084607. http://doi.org/10.1103/PhysRevFluids.4.084607
28. Stepanov R., Golbraikh E., Frick P., Shestakov A. Helical bottleneck effect in 3D homogeneous isotropic turbulence // Fluid Dyn. Res. 2018. Vol. 50. 011412. http://doi.org/10.1088/1873-7005/aa782e
29. Stepanov R., Golbraikh E., Frick P., Shestakov A. Hindered energy cascade in highly helical isotropic turbulence // Phys. Rev. Lett. 2015. Vol. 115. 234501. http://doi.org/10.1103/PhysRevLett.115.234501
30. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974. 712 с.
31. Шестаков А.В., Степанов Р.А., Фрик П.Г. Влияние вращения на каскадные процессы в спиральной турбулентности // Вычисл. мех. сплош. сред. 2012. T. 5, № 2. C. 193-198. http://doi.org/10.7242/1999-6691/2012.5.2.23
32. Шестаков А.В., Степанов Р.А., Фрик П.Г. О механизмах каскадного переноса энергии в конвективной турбулентности // Вычисл. мех. сплош. сред. 2016. T. 9, № 2. C. 125-134. http://doi.org/10.7242/1999-6691/2016.9.2.11
33. Гледзер E.Б. Эффекты вращения и спиральности в каскадных моделях турбулентности // ДАН. 2008. Т. 416, № 4. С. 488-492. (English version https://doi.org/10.1134/S1028335808040101)
34. Plunian F., Stepanov R. Cascades and dissipation ratio in rotating magnetohydrodynamic turbulence at low magnetic Prandtl number // Phys. Rev. E. 2010. Vol. 82. 046311. http://doi.org/10.1103/PhysRevE.82.046311
35. Nikitin N.V., Nicoud F., Wasistho B., Squires K.D., Spalart P.R. An approach to wall modeling in large-eddy simulations // Phys. Fluids. 2000. Vol. 12. P. 1629-1632. http://doi.org/10.1063/1.870414
36. Yang X.I.A., Park G.I., Moin P. Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations // Phys. Rev. Fluids. 2017. Vol. 2. 104601. http://doi.org/10.1103/PhysRevFluids.2.104601.

Загрузки

Опубликован

2022-11-03

Как цитировать

Селуков, Д. Г., & Степанов, Р. А. (2022). Каскадная модель турбулентной вязкости для пограничного слоя. Вычислительная механика сплошных сред, 15(3), 363–375. https://doi.org/10.7242/1999-6691/2022.15.3.28

Выпуск

Раздел

Статьи