Особенности течения концентрированных суспензий твердых частиц

Авторы

  • Олег Иванович Скульский Институт механики сплошных сред УрО РАН

DOI:

https://doi.org/10.7242/1999-6691/2021.14.2.18

Ключевые слова:

высококонцентрированные суспензии, реологическая модель, неньютоновская дисперсионная среда, диффузионно-конвективный перенос, численное решение, плоские и осесимметричные течения

Аннотация

Концентрированные суспензии твердых частиц, широко используемые в фармацевтической, косметической и пищевой промышленности, демонстрируют сложную реологию. В реометрических одномерных течениях концентрированных суспензий может наблюдаться плавное или скачкообразное увеличение напряжений при плавном увеличении интенсивности скорости деформации. Это имеет отношение к появлению фазового перехода первого рода. Ранее предложена феноменологическая реологическая модель концентрированной суспензии твердых частиц в ньютоновской дисперсионной жидкости, характеризующаяся S-образной кривой течения и описывающая как непрерывное, так и скачкообразное увеличение интенсивности напряжений при равномерном увеличении интенсивности скорости деформации. Получены точные аналитические формулы для профилей скоростей течений суспензий в ротационных вискозиметрах. Предложенная модель модифицирована для учета неньютоновских свойств дисперсионной среды, при малых интенсивностях напряжений проявляющей псевдопластические свойства, а при больших - дилатантные. В данной статье для исследования особенностей течений в двумерных областях на ее основе создана численная модель расчета методом конечных элементов полей скоростей и диффузионно-конвективного переноса твердых частиц. В результате вычислительных экспериментов выявлены особенности течения высококонцентрированных суспензий в плоских и осесимметричных каналах. Показано, что в плоском диффузоре, в отличие от ньютоновской и псевдопластической жидкостей, продольная скорость суспензии замедляется у стенок, где напряжения максимальны, а в центральной части канала увеличивается. У затопленной струи в ограниченной стенками области обнаружено, что с ростом средней скорости поступающей чистой жидкости более, чем на 0,01 м/с, наблюдается образование локального вихря скорости, ограниченного слоем с высокой концентрацией частиц и более вязкой средой. Внутри вихря концентрация частиц минимальна.

Скачивания

Данные по скачиваниям пока не доступны.
Поддерживающие организации
Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-45-596020.

Библиографические ссылки

Verdier C. Rheological properties of living materials. From cells to tissues // J. Theor. Med. 2003. Vol. 5. P. 67-91. https://doi.org/10.1080/10273360410001678083">https://doi.org/10.1080/10273360410001678083

Ходаков Г.С. Реология суспензий. Теория фазового течения и ее экспериментальное обоснование // Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И. Менделеева). 2003. Т. XLVII, № 2. С. 33-43.

Guillou S., Makhloufi R. Effect of a shear-thickening rheological behaviour on the friction coefficient in a plane channel flow: A study by direct numerical simulation // Journal of Non-Newtonian Fluid Mechanics. 2007. Vol. 144. P. 73-86. https://doi.org/10.1016/j.jnnfm.2007.03.008">https://doi.org/10.1016/j.jnnfm.2007.03.008

Galindo-Rosales F.J., Rubio-Hernandez F.J., Velazquez-Navarro J.F. Shear-thickening behavior of Aerosil® R816 nanoparticles suspensions in polar organic liquids // Rheol. Acta. 2009. Vol. 48. P. 699-708. https://doi.org/10.1007/s00397-009-0367-7">https://doi.org/10.1007/s00397-009-0367-7

Liu A.J., Nagel S.R. The jamming transition and the marginally jammed solid // Annu. Rev. Condens. Matter Phys. 2010. Vol.1. P. 347-369. https://doi.org/10.1146/annurev-conmatphys-070909-104045">https://doi.org/10.1146/annurev-conmatphys-070909-104045

6 Seth J.R., Mohan L.Locatelli-Champagne C., Cloitre M., Bonnecaze R.T. A micromechanical model to predict the flow of soft particle glasses // Nature Mater. 2011. Vol. 10. P. 838-843. https://doi.org/10.1038/nmat3119">https://doi.org/10.1038/nmat3119

Galindo-Rosalesa F.J., Rubio-Hernбndez F.J., Sevilla A. An apparent viscosity function for shear thickening fluids // Journal of Non-Newtonian Fluid Mechanics. 2011. Vol. 166. P. 321-325. https://doi.org/10.1016/j.jnnfm.2011.01.001">https://doi.org/10.1016/j.jnnfm.2011.01.001

Boyer F., Guazzell E., Pouliquen O. Unifying suspension and granular rheology // Phys. Rev. Lett. 2011. Vol. 107. 188301. https://doi.org/10.1103/PhysRevLett.107.188301">https://doi.org/10.1103/PhysRevLett.107.188301

Nakanishi H., Nagahiro S., Mitarai N. Fluid dynamics of dilatant fluids // Phys. Rev. E. 2012. Vol. 85. 011401. https://doi.org/10.1103/PhysRevE.85.011401">https://doi.org/10.1103/PhysRevE.85.011401

Фортье А. Механика суспензий. М.: Мир, 1971. 264 с.

Урьев Н.Б. Физико-химические основы технологии дисперсных систем и материалов. М.: Химия, 1988. 255 с.

Tanner R.I. Engineering rheology. Oxford University Press, 2000. 586 p.

Brown E., Jaeger H.M. Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming // Rep. Prog. Phys. 2014. Vol. 77. 046602. http://iopscience.iop.org/0034-4885/77/4/046602">http://iopscience.iop.org/0034-4885/77/4/046602

Denn M.M., Morris J.F. Rheology of non-Brownian suspensions // Annu. Rev. Chem. Biomol. Eng. 2014. Vol. 5. P. 203-228. https://doi.org/10.1146/annurev-chembioeng-060713-040221">https://doi.org/10.1146/annurev-chembioeng-060713-040221

Ardakani H.A., Mitsoulis E., Hatzikiriakos S.G. Capillary flow of milk chocolate // Journal of Non-Newtonian Fluid Mechanics. 2014. Vol. 210. P. 56-65. https://doi.org/10.1016/j.jnnfm.2014.06.001">https://doi.org/10.1016/j.jnnfm.2014.06.001

Опубликован

2021-06-30

Выпуск

Раздел

Статьи

Как цитировать

Скульский, О. И. (2021). Особенности течения концентрированных суспензий твердых частиц. Вычислительная механика сплошных сред, 14(2), 210-219. https://doi.org/10.7242/1999-6691/2021.14.2.18