Особенности изготовления препрегов для длинномерных изделий из композиционных материалов с термопластичным связующим
DOI:
https://doi.org/10.7242/1999-6691/2019.12.3.29Ключевые слова:
композиционные материалы, углеродная нить, термопластичное связующие, реологические свойства, полиэфирэфиркетон, численная модель, толщина слоя, фронт пропиткиАннотация
Технология получения деталей из композиционных материалов с термопластичным связующим отличается от традиционной, испопьзующей в этом качестве термореактивные смолы, и требует новых конструкторскх и технологическх решений. В данной статье предложен двухстадийный способ изготовления длинномерной углеродной несущей жилы высоковольтных проводов: на первой стадии на углеродную нить наносится термопластичный слой из расплава полиэфирэфиркетона, на второй - из нитей формируется жила и обжимается методом гидродинамического волочения. С помощью метода конечных элементов построена численная модель процесса нанесения слоя термопласта на углеродную нить в осесимметричной фильере. Для описания реологических свойств расплава полиэфирэфиркетона выбрана обобщенная модель Карро и определены входящие в нее материальные константы. Рассчитаны поля скоростей, давления и температуры, дана оценка влияния приложенного давления и скорости протяжки жилы на толщину наносимого слоя. Для стадии формирования и пропитки жилы, состоящей из покрытых термопластичным слоем углеродных нитей, в предположении, что каждая из нитей в жиле в процессе обжатия находится в одинаковых условиях, на основе аналитического решения задачи плоскорадиальной фильтрации получено безразмерное уравнение для положения фронта пропитки пористой углеродной нити под действием внешнего линейно распределенного по каналу волоки давления. Разработанная математическая модель позволяет рассчитывать поля давления и температуры, кинематику течения, оценивать влияние технологических параметров на толщину наносимого на нить термопластичного слоя и дает возможность прогнозировать степень однородности готового изделия.
Скачивания
Библиографические ссылки
O'Bradaigh C.M. Sheet forming of composite materials // Flow and rheology in polymer composites manufacturing / Ed. S.G. Advani. Elsevier, 1995.
Johnson A.F. Rheological model for the forming of fabric-reinforced thermoplastic sheets // Composites Manufacturing. 1995. Vol. 6. P. 153-160. https://doi.org/10.1016/0956-7143(95)95006-K">https://doi.org/10.1016/0956-7143(95)95006-K
Johnson A.F., Picket A.K. Numerical simulation of the forming process in long fibre reinforced thermoplastics // WIT Transactions on Engineering Sciences. 1996. Vol. 10. P. 233-242. (URL: https://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/10/8842">https://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/10/8842)
Сироткин О.С., Андрюнина М.А., Бейдер Э.Я. Новые конструкционные и функциональные ПКМ на основе термопластов и технологии их формования // Авиационная промышленность. 2012. № 4. С. 43-47.
Chen X., Zhang Y., Shilin Y. Two-dimensional simulations of resin flow in dual-scale fibrous porous medium under constant pressure // J. Reinforc. Plast. Compos. 2013. Vol. 32. P. 1757-1766. http://dx.doi.org/10.1177/0731684413496573">http://dx.doi.org/10.1177/0731684413496573
Yang B., Tang Q., Wang S., Jin T., Bi F. Three-dimensional numerical simulation of the filling stage in resin infusion process // J. Compos. Mater. 2016. Vol. 50. P. 4171-4186. https://doi.org/10.1177%2F0021998316631809">https://doi.org/10.1177%2F0021998316631809
Бейдер Э.Я., Петрова Г.Н. Термопластичные связующие для полимерных композиционных материалов // Труды ВИАМ. 2015. № 11. С. 40-49. https://doi.org/10.18577/2307-6046-2015-0-11-5-5">https://doi.org/10.18577/2307-6046-2015-0-11-5-5
Saad A., Echchelh A., Hattabi M., El Ganaoui M., Lahlou F. Numerical simulation and analysis of flow in resin transfer moulding process // FDMP. 2012. Vol. 8. P. 277-294. https://doi.org/10.3970/fdmp.2012.008.277">https://doi.org/10.3970/fdmp.2012.008.277
Doi M., Edwards S.F. The theory of polymer dynamics. Oxford University Press, 1986. 404 p.
Сильченков Д.Г., Гришин С.В., Гладков И.Б. Композиционный несущий сердечник для внешних токоведущих жил проводов воздушных высоковольтных линий электропередачи и способ его производства. Патент РФ № 2386183 от 10.04.2010 г.
Ершов С.В. Пространственное течение расплавов полимеров в канале зоны дозирования пластицирующего экструдера и формующего инструмента / Дисс... канд. тех. наук: 01.02.05. Пермь, ПНИПУ, 2018. 119 с.
Кузнецова Ю.Л., Скульский О.И. Исследование реологических моделей растворов полимеров на реометрических течениях // Математическое моделирование в естественных науках. 2013. С. 92-94.
Скульский О.И., Аристов С.Н. Механика аномально вязких жидкостей. М.-Ижевск: Регулярная и хаотическая динамика, 2004. 154 с.
Кузнецова Ю.Л., Скульский О.И. Влияние режимов течения на расслоение сдвигового потока жидкости c немонотонной кривой течения // ПМТФ. 2019. Т. 60, № 1. С. 27-36. https://doi.org/10.15372/PMTF20190104">https://doi.org/10.15372/PMTF20190104
Сегерлинд Л. Применение метода конечных элементов. М., Мир, 1979. 392 с.
Zienkiewicz O.C, Taylor R.L., Zhu J.Z. The finite element method. Its basis and fundamentals. Butterworth-Heinemann, 2013. 756 p. https://doi.org/10.1016/C2009-0-24909-9">https://doi.org/10.1016/C2009-0-24909-9
Cook R.D., Malkus D.S., Plesha M.E. Concepts and applications of finite element analysis. Wiley, 1989. 637 p.
Pickett A.K., Queckbörner T., de Luca P., Haug E. An explicit finite element solution for the forming prediction of continuous fibre-reinforced thermoplastic sheets // Composites Manufacturing. 1995. Vol. 6. P. 237-243. https://doi.org/10.1016/0956-7143(95)95016-R">https://doi.org/10.1016/0956-7143(95)95016-R
Jenny P., Lee S.H., Tchelepi H.A. Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media // J. Comput. Phys. 2006. Vol. 217. P. 627-641. https://doi.org/10.1016/j.jcp.2006.01.028">https://doi.org/10.1016/j.jcp.2006.01.028
Димитриенко Ю.И., Левина А.И., Боженик П. Конечно-элементное моделирование локальных процессов переноса в пористых средах // Вестник МГТУ им. Н.Э. Баумана. Серия: Естественные науки. 2008. № 3. C. 90-103.
Димитриенко Ю.И., Шугуан Ли. Конечно-элементное моделирование неизотермического стационарного течения неньютоновской жидкости в сложных областях // Математическое моделирование и численные методы. 2018. № 2. C. 70-95. (URL: http://mmcm.bmstu.ru/articles/164/">http://mmcm.bmstu.ru/articles/164/)
Скульский О.И., Фонарев А.В., Кузнецова Ю.Л. «FEM FLOW» – конечно-элементная программа для расчета течения вязкоупругой жидкости в каналах со свободной поверхностью с учетом неизотермичности: cвидетельство об официальной регистрации программы для ЭВМ № 2007611760 от 25.04.2007.
Баренблатт Г.И., Ентов В.М., Рыжик В.М. Движение жидкостей и газов в природных пластах. М.: Недра, 1984. 211 с.
Маскет М. Течение однородных жидкостей в пористой среде. М.: Институт компьютерных исследований, 2004. 641 с.
LeBel F., Fanaei A.E., Ruiz É., Trochu F. Prediction of optimal flow front velocity to minimize void formation in dual scale fibrous reinforcements // Int. J. Mater. Form. 2014. Vol. 7. P. 93-116. https://doi.org/10.1007/s12289-012-1111-x">https://doi.org/10.1007/s12289-012-1111-x
Димитриенко Ю.И., Богданов И.О. Многомасштабное моделирование процессов фильтрации жидкого связующего в композитных конструкциях, изготавливаемых методом RTM // Математическое моделирование и численные методы. 2017. № 2. C. 3-27. (URL: http://mmcm.bmstu.ru/articles/131/">http://mmcm.bmstu.ru/articles/131/)