Применение культур хлореллы обыкновенной в биотехнологии и пищевой промышленности

Авторы

  • А.Д. Новокшонова Пермский государственный национальный исследовательский университет
  • П.В. Храмцов Институт экологии и генетики микроорганизмов УрО РАН
  • М.Б. Раев Институт экологии и генетики микроорганизмов УрО РАН

DOI:

https://doi.org/10.7242/2658-705X/2023.1.4

Ключевые слова:

хлорелла, биотопливо, фитогормоны, метаболиты

Аннотация

Микроводоросли, и в частности Chlorella vulgaris, на данный момент являются важнейшими инструментами современного технологического производства различных продуктов и товаров. За последние десятилетия область применения микроводорослей заметно расширилась и нет сомнений, что технологии на основе микроводорослей будут развиваться и находить новые применения. Создание возобновляемого топливного сырья из C. vulgaris, по оценкам экспертов, поможет преодолеть экономические и технические проблемы, связанные с сокращением запасов нефти. Большое пространство для улучшения данных технологий остаётся в области поиска новых способов стимулирования как физических (освещение, магнитные поля, температура), так и химических (фитогормоны, удобрения, малые органические молекулы). В этой обзорной работе будут рассмотрены перспективы применения C. vulgaris в промышленности, а также способы увеличения ее биомассы и содержания полезных метаболитов.

Поддерживающие организации
Работа выполнена в рамках государственного задания; номер государственной регистрации темы № 122010800029-1

Биографии авторов

  • А.Д. Новокшонова, Пермский государственный национальный исследовательский университет

    студентка

  • П.В. Храмцов , Институт экологии и генетики микроорганизмов УрО РАН

    кандидат биологических наук, старший научный сотрудник

  • М.Б. Раев , Институт экологии и генетики микроорганизмов УрО РАН

    доктор биологических наук, ведущий научный сотрудник

Библиографические ссылки

Abdul Fattah S., Nazlina Haiza M.Y. Unveiling antimicrobial activity of microalgae Chlorella sorokiniana (UKM2), Chlorella sp. (UKM8) and Scenedesmus sp. (UKM9) // Saudi journal of biological sciences. – 2022. – Vol. 29. – № 2. – P. 1043–1052.

Amasino R. Kinetin arrives: the 50th anniversary of a new plant hormone // Plant physiology. – 2005. – Vol. 138. – № 3. – P. 1177–1184.

Bajguz A., Hayat S. Effects of brassinosteroids on plant responses to environmental stresses // Plant Physiology and Biochemistry. – 2009. – Vol. 47. – № 1. – P. 1–8.

Bajguz A., Piotrowska-Niczyporuk A. Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae) // Plant Physiology and Biochemistry. – 2013. – Vol. 71. – P. 290–297.

Benemann J.R., Oswald W.J. Systems and economic analysis of microalgae ponds for conversion of carbon dioxide to biomass // Pittsburgh Energy Technology Center. – 1996. – Vol. 1. – P. 1–11.

Champenois J.M. Review of the taxonomic revision of Chlorella and consequences for its food uses in Europe // Journal of Applied Phycology. – 2015. –Vol. 27. – № 5. – P. 1845–1851.

Choi S., Lee S.Y., Lee J., Cho J.M., Jin-Suk Lee. Rapid induction of edible lipids in Chlorella by mild electric stimulation // Bioresource Technology. – 2019. – Vol. 292. – P. 121–950.

Choudhary S.P., Yu Y.Q. Yamaguchi-Shinozaki, Shinozaki K., Benefits of brassinosteroid cross talk // Trends in Plant Science. – 2012. – Vol. 10. – № 10. – P. 594–605.

Coronado-Reyes J.A., Salazar-Torres J., Juárez-Campos B., González Hernández J.C. Chlorella vulgaris, a microalgae important to be used in Biotechnology: a review // Food Science and Technology. – 2020. – Vol. 42. – P. 320–370.

Costa S.S., Peres B.P., Machado B.R., Costa J.A.V., Santos L.O. Increased lipid synthesis in the culture of Chlorella homosphaera with magnetic fields application // Bioresource Technology. – 2020. – Vol. 315. – P. 123–880.

Das P., Chandramohan V.P., Mathimani T. Recent advances in thermochemical methods for the conversion of algal biomass to energy // Science of The Total Environment. – 2021. – Vol. 766. – P. 144–608.

Deamici K.M., Cardias B.B., Costa J.A.V., Santos L.O. Static magnetic fields in culture of Chlorella fusca: Bioeffects on growth and biomass composition // Process Biochemistry. – 2016. – Vol. 51. – № 7. – P. 912–916.

Dineshkumar R., Rajendran N., Jayasingam P. Sampathkumar P. Cultivation and chemical composition of microalgae Chlorella vulgaris and its antibacterial activity against human pathogens // Journal of Aquaculture & Marine Biology. – 2017. – Vol. 5. – P. 1–19.

Dragone G. Challenges and opportunities to increase economic feasibility and sustainability of mixotrophic cultivation of green microalgae of the genus Chlorella sp. // Renewable and Sustainable Energy Reviews. – 2022. – Vol. 160. – P. 112–284.

Esraa E.A., Aioub A.A., Elesawy A.E. Algae as bio-fertilizers: between current situation and future prospective // Saudi Journal of Biological Sciences. – 2022. – Vol. 29. – № 5. – P. 3083–3096.

Ferrazzano G.F., Papa C., Pollio A., Ingenito A. Sangianantoni G., Cantile T., Cyanobacteria and microalgae as sources of functional foods to improve human general and oral health // Molecules. – 2020. – Vol. 25. – № 21. – P. 51–64.

Gouda M., Tadda M.A., Zhao Y. Microalgae bioactive carbohydrates as a novel sustainable and ecofriendly source of prebiotics: Emerging health functionality and recent technologies for extraction and detection // Frontiers in Nutrition. – 2022. – Vol. 9. – P. 692–806.

Han X., Zeng H., Bartocci P., Fantozzi F., Yan Y. Phytohormones and effects on growth and metabolites of microalgae: a review // Fermentation. – 2018. – Vol. 4. – № 2. – P. 25–25.

Hirose N., Takei K., Kuroha T., Kamada-Nobusada T., Hayashi H., Sakakibara H. Regulation of cytokinin biosynthesis, compartmentalization and translocation // Journal of Experimental Botany. – 2007. – Vol. 59. – № 1. – P. 75–83.47.

Hunt R.W., Chinnasamy S., Das K.C. Recent advances in thermochemical methods for the conversion of algal biomass to energy // Science of The Total Environment. – 2021. – Vol. 766. – P. 144–160.

Hunt R.W., Chinnasamy S., Das K.C. The effect of naphthalene-acetic acid on biomass productivity and chlorophyll content of green algae, Coccolithophore, Diatom, and Cyanobacterium cultures // Applied Biochemistry and Biotechnology. –2011. – Vol. 164. – P. 1350–1365.

Huss V.A., Carola F. Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta) // Journal of Phycology. – 1999. – Vol. 35. – № 3. – P. 587–598.

Ibrahim I., Elbialy Z. A review: Importance of Chlorella sp. and different applications // Alexandria Journal of Veterinary Sciences. – 2020. – Vol. 65. – № 1. – P. 16–16.

Iversen P.W., Eastwood B.J., Sittampalam G.S., Cox K.L. A comparison of assay performance measures in screening assays: signal window, Z'-factor, and assay variability ratio // SLAS Discovery. – 2006. – Vol. 11. – № 3. – P. 247–252.

Karpagam R., Jawaharraj K., Gnanam R. Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy // Science of The Total Environment. – 2021. – Vol. 766. – P. 144–236.

Khalili A., Najafpour G.D., Amini G. Influence of nutrients and LED light intensities on biomass production of microalgae Chlorella vulgaris // Biotechnology and Bioprocess Engineering. – 2015. – Vol. 20. – № 2. – P. 284–290.

Kong W., Kong J., Lyu H. Application of indole-3-acetic acid in microalgae cultivation to improve the feasibility of simultaneously purifying wastewater, fixing CO2 and producing fatty acids under Hg stress // Journal of Cleaner Production. –2022. – Vol. 358. – P. 28–132.

Liu J., Qiu W. Stimulatory effect of auxins on the growth and lipid productivity of Chlorella pyrenoidosa and Scenedesmus quadricauda // Algal Research. – 2016. –Vol. 18. – P. 273–280.

Liu J., Song Y. Optimization of growth conditions toward two-stage cultivation for lipid production of Chlorella vulgaris // Environmental Progress & Sustainable Energy. – 2015. – Vol. 34. – № 6. – P. 1801–1807.

Mansouri H., Talebizadeh R. Effects of indole-3-butyric acid on growth, pigments and UV-screening compounds in Nostoc linckia // Phycological Research. – 2017. – Vol. 65. – № 3. – P. 212–216.

Masojídek J., Torzillo G. Mass cultivation of freshwater microalgae // Reference Module in Earth Systems and Environmental Sciences. – 2014. – P. 2226–2235.

Mateusz M., Stéphanie R. The role of auxin in Cell wall expansion // International journal of molecular sciences. – 2018. – Vol. 19. – № 4. – P. 951–951.

Metsoviti M.N., Papapolymerou G. Effect of light intensity and quality on growth rate and composition of Chlorella vulgaris // Plants (Basel, Switzerland). – 2019. – Vol. 9. – №. 1. – P. 31–31.

Mok D.W., Mok M.C. Cytokinin metabolism and action // Annual review of plant physiology and plant molecular biology. – 2001. – Vol. 52. – № 1. – P. 89–118.

Parsaeimehr A., Mancera-Andrade E.I., Robledo-Padilla F., Iqbal H.M., Parra-Saldivar R. A chemical approach to manipulate the algal growth, lipid content and high-value alpha-linolenic acid for biodiesel production // Algal Research. – 2017. – Vol. 26. – P. 312–322.

Piotrowska-Niczyporuk A., Bajguz A. The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae) // Plant Growth Regulation. – 2014. – Vol. 73. – № 1. – P. 57–66.

Romanenko E.A., Kosakovskaya I.V. Phytohormones of microalgae: biological role and involvement in the regulation of physiological processes, Pt I. Auxins, Abscisic Acid, Ethylene // International Journal on Algae. – 2015. – Vol. 17. –№ 3. – P. 275–289.

Romanenko K.O., Kosakovskaya I.V., Romanenko P.O. Phytohormones of microalgae: Biological role and involvement in the regulation of physiological processes, Pt II. Cytokinins and Gibberellins // International Journal on Algae. – 2016. – Vol. 18. – P. 179–201.

Sandberg M., Määttänen A., Peltonen J., Vuorela P.M., Fallarero A. Automating a 96-well microtitre plate model for Staphylococcus aureus biofilms: an approach to screening of natural antimicrobial compounds // International Journal of Antimicrobial Agents. – 2008. – Vol. 32. – № 3. – P. 233–240.

Sivaramakrishnan R., Incharoensakdi A. Plant hormone induced enrichment of Chlorella sp. omega-3 fatty acids // Biotechnology for biofuels. – 2020. – Vol. 13. –№ 1. https://doi.org/10.1186/s13068-019-1647-9.

Stirk W.A., Tarkowská D., Turečová V., Strnad M. Abscisic acid, gibberellins and brassinosteroids in Kelpak, a commercial seaweed extract made from Ecklonia maxima // Journal of Applied Phycology. – 2014. – Vol. 26. – № 1. – P. 561–567.

Subhash V., Rohit M.V., Devi M.P., Swamy Y.V. Temperature induced stress influence on biodiesel productivity during mixotrophic microalgae cultivation with wastewater // Bioresource Technology. – 2014. – Vol. 169. – P. 789–793.

Thi C., Dang T. Characterization of endogenous auxins and gibberellins produced by Chlorella sorokiniana (TH01) under phototrophic and mixtrophic cultivation modes toward applications in microalgal biorefinery and crop research // Journal of Chemistry. – 2020. – Vol. 4. – P. 1–11.

Wang C., Qi M., Guo J., Zhou C., Yan X. The Active Phytohormone in Microalgae: The characteristics, efficient detection, and their adversity resistance Applications // Molecules. – 2022. – Vol. 27. – № 1. – P. 46–46.

Wase N., Tu B., Allen J.W., Black P.N., DiRusso C.C. Identification and metabolite profiling of chemical activators of lipid accumulation in green algae // Plant Physiology. – 2017. – Vol. 174. – № 4. – P. 2146–2165.

Werner T., Schmülling T. Cytokinin action in plant development // Current Opinion in Plant Biology. – 2009. – Vol. 12. – № 5. – P. 527–538.

Wilson G. Microalgae for biotechnological applications: Cultivation, harvesting and biomass processing // Aquaculture. – 2020. – Vol. 528. – P. 562–735.

Wood E., Wingard L., Andersen R. Measuring growth rates in microalgal cultures // Algal Culturing Techniques. 2005.

Ziganshina E.E., Bulynina S.S., Ziganshin A.M. Growth characteristics of chlorella sorokiniana in a photobioreactor during the utilization of different forms of nitrogen at various temperatures // Plants. – 2022. – Vol. 11. – № 8. – P. 10–86.

Загрузки

Опубликован

2023-05-30

Выпуск

Раздел

Исследования: теория и эксперимент

Как цитировать

Новокшонова, А., Храмцов , П., & Раев , М. (2023). Применение культур хлореллы обыкновенной в биотехнологии и пищевой промышленности. Вестник Пермского федерального исследовательского центра, 1, 32-42. https://doi.org/10.7242/2658-705X/2023.1.4