Применение культур хлореллы обыкновенной в биотехнологии и пищевой промышленности
DOI:
https://doi.org/10.7242/2658-705X/2023.1.4Ключевые слова:
хлорелла, биотопливо, фитогормоны, метаболитыАннотация
Микроводоросли, и в частности Chlorella vulgaris, на данный момент являются важнейшими инструментами современного технологического производства различных продуктов и товаров. За последние десятилетия область применения микроводорослей заметно расширилась и нет сомнений, что технологии на основе микроводорослей будут развиваться и находить новые применения. Создание возобновляемого топливного сырья из C. vulgaris, по оценкам экспертов, поможет преодолеть экономические и технические проблемы, связанные с сокращением запасов нефти. Большое пространство для улучшения данных технологий остаётся в области поиска новых способов стимулирования как физических (освещение, магнитные поля, температура), так и химических (фитогормоны, удобрения, малые органические молекулы). В этой обзорной работе будут рассмотрены перспективы применения C. vulgaris в промышленности, а также способы увеличения ее биомассы и содержания полезных метаболитов.
Библиографические ссылки
Abdul Fattah S., Nazlina Haiza M.Y. Unveiling antimicrobial activity of microalgae Chlorella sorokiniana (UKM2), Chlorella sp. (UKM8) and Scenedesmus sp. (UKM9) // Saudi journal of biological sciences. – 2022. – Vol. 29. – № 2. – P. 1043–1052.
Amasino R. Kinetin arrives: the 50th anniversary of a new plant hormone // Plant physiology. – 2005. – Vol. 138. – № 3. – P. 1177–1184.
Bajguz A., Hayat S. Effects of brassinosteroids on plant responses to environmental stresses // Plant Physiology and Biochemistry. – 2009. – Vol. 47. – № 1. – P. 1–8.
Bajguz A., Piotrowska-Niczyporuk A. Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae) // Plant Physiology and Biochemistry. – 2013. – Vol. 71. – P. 290–297.
Benemann J.R., Oswald W.J. Systems and economic analysis of microalgae ponds for conversion of carbon dioxide to biomass // Pittsburgh Energy Technology Center. – 1996. – Vol. 1. – P. 1–11.
Champenois J.M. Review of the taxonomic revision of Chlorella and consequences for its food uses in Europe // Journal of Applied Phycology. – 2015. –Vol. 27. – № 5. – P. 1845–1851.
Choi S., Lee S.Y., Lee J., Cho J.M., Jin-Suk Lee. Rapid induction of edible lipids in Chlorella by mild electric stimulation // Bioresource Technology. – 2019. – Vol. 292. – P. 121–950.
Choudhary S.P., Yu Y.Q. Yamaguchi-Shinozaki, Shinozaki K., Benefits of brassinosteroid cross talk // Trends in Plant Science. – 2012. – Vol. 10. – № 10. – P. 594–605.
Coronado-Reyes J.A., Salazar-Torres J., Juárez-Campos B., González Hernández J.C. Chlorella vulgaris, a microalgae important to be used in Biotechnology: a review // Food Science and Technology. – 2020. – Vol. 42. – P. 320–370.
Costa S.S., Peres B.P., Machado B.R., Costa J.A.V., Santos L.O. Increased lipid synthesis in the culture of Chlorella homosphaera with magnetic fields application // Bioresource Technology. – 2020. – Vol. 315. – P. 123–880.
Das P., Chandramohan V.P., Mathimani T. Recent advances in thermochemical methods for the conversion of algal biomass to energy // Science of The Total Environment. – 2021. – Vol. 766. – P. 144–608.
Deamici K.M., Cardias B.B., Costa J.A.V., Santos L.O. Static magnetic fields in culture of Chlorella fusca: Bioeffects on growth and biomass composition // Process Biochemistry. – 2016. – Vol. 51. – № 7. – P. 912–916.
Dineshkumar R., Rajendran N., Jayasingam P. Sampathkumar P. Cultivation and chemical composition of microalgae Chlorella vulgaris and its antibacterial activity against human pathogens // Journal of Aquaculture & Marine Biology. – 2017. – Vol. 5. – P. 1–19.
Dragone G. Challenges and opportunities to increase economic feasibility and sustainability of mixotrophic cultivation of green microalgae of the genus Chlorella sp. // Renewable and Sustainable Energy Reviews. – 2022. – Vol. 160. – P. 112–284.
Esraa E.A., Aioub A.A., Elesawy A.E. Algae as bio-fertilizers: between current situation and future prospective // Saudi Journal of Biological Sciences. – 2022. – Vol. 29. – № 5. – P. 3083–3096.
Ferrazzano G.F., Papa C., Pollio A., Ingenito A. Sangianantoni G., Cantile T., Cyanobacteria and microalgae as sources of functional foods to improve human general and oral health // Molecules. – 2020. – Vol. 25. – № 21. – P. 51–64.
Gouda M., Tadda M.A., Zhao Y. Microalgae bioactive carbohydrates as a novel sustainable and ecofriendly source of prebiotics: Emerging health functionality and recent technologies for extraction and detection // Frontiers in Nutrition. – 2022. – Vol. 9. – P. 692–806.
Han X., Zeng H., Bartocci P., Fantozzi F., Yan Y. Phytohormones and effects on growth and metabolites of microalgae: a review // Fermentation. – 2018. – Vol. 4. – № 2. – P. 25–25.
Hirose N., Takei K., Kuroha T., Kamada-Nobusada T., Hayashi H., Sakakibara H. Regulation of cytokinin biosynthesis, compartmentalization and translocation // Journal of Experimental Botany. – 2007. – Vol. 59. – № 1. – P. 75–83.47.
Hunt R.W., Chinnasamy S., Das K.C. Recent advances in thermochemical methods for the conversion of algal biomass to energy // Science of The Total Environment. – 2021. – Vol. 766. – P. 144–160.
Hunt R.W., Chinnasamy S., Das K.C. The effect of naphthalene-acetic acid on biomass productivity and chlorophyll content of green algae, Coccolithophore, Diatom, and Cyanobacterium cultures // Applied Biochemistry and Biotechnology. –2011. – Vol. 164. – P. 1350–1365.
Huss V.A., Carola F. Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta) // Journal of Phycology. – 1999. – Vol. 35. – № 3. – P. 587–598.
Ibrahim I., Elbialy Z. A review: Importance of Chlorella sp. and different applications // Alexandria Journal of Veterinary Sciences. – 2020. – Vol. 65. – № 1. – P. 16–16.
Iversen P.W., Eastwood B.J., Sittampalam G.S., Cox K.L. A comparison of assay performance measures in screening assays: signal window, Z'-factor, and assay variability ratio // SLAS Discovery. – 2006. – Vol. 11. – № 3. – P. 247–252.
Karpagam R., Jawaharraj K., Gnanam R. Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy // Science of The Total Environment. – 2021. – Vol. 766. – P. 144–236.
Khalili A., Najafpour G.D., Amini G. Influence of nutrients and LED light intensities on biomass production of microalgae Chlorella vulgaris // Biotechnology and Bioprocess Engineering. – 2015. – Vol. 20. – № 2. – P. 284–290.
Kong W., Kong J., Lyu H. Application of indole-3-acetic acid in microalgae cultivation to improve the feasibility of simultaneously purifying wastewater, fixing CO2 and producing fatty acids under Hg stress // Journal of Cleaner Production. –2022. – Vol. 358. – P. 28–132.
Liu J., Qiu W. Stimulatory effect of auxins on the growth and lipid productivity of Chlorella pyrenoidosa and Scenedesmus quadricauda // Algal Research. – 2016. –Vol. 18. – P. 273–280.
Liu J., Song Y. Optimization of growth conditions toward two-stage cultivation for lipid production of Chlorella vulgaris // Environmental Progress & Sustainable Energy. – 2015. – Vol. 34. – № 6. – P. 1801–1807.
Mansouri H., Talebizadeh R. Effects of indole-3-butyric acid on growth, pigments and UV-screening compounds in Nostoc linckia // Phycological Research. – 2017. – Vol. 65. – № 3. – P. 212–216.
Masojídek J., Torzillo G. Mass cultivation of freshwater microalgae // Reference Module in Earth Systems and Environmental Sciences. – 2014. – P. 2226–2235.
Mateusz M., Stéphanie R. The role of auxin in Cell wall expansion // International journal of molecular sciences. – 2018. – Vol. 19. – № 4. – P. 951–951.
Metsoviti M.N., Papapolymerou G. Effect of light intensity and quality on growth rate and composition of Chlorella vulgaris // Plants (Basel, Switzerland). – 2019. – Vol. 9. – №. 1. – P. 31–31.
Mok D.W., Mok M.C. Cytokinin metabolism and action // Annual review of plant physiology and plant molecular biology. – 2001. – Vol. 52. – № 1. – P. 89–118.
Parsaeimehr A., Mancera-Andrade E.I., Robledo-Padilla F., Iqbal H.M., Parra-Saldivar R. A chemical approach to manipulate the algal growth, lipid content and high-value alpha-linolenic acid for biodiesel production // Algal Research. – 2017. – Vol. 26. – P. 312–322.
Piotrowska-Niczyporuk A., Bajguz A. The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae) // Plant Growth Regulation. – 2014. – Vol. 73. – № 1. – P. 57–66.
Romanenko E.A., Kosakovskaya I.V. Phytohormones of microalgae: biological role and involvement in the regulation of physiological processes, Pt I. Auxins, Abscisic Acid, Ethylene // International Journal on Algae. – 2015. – Vol. 17. –№ 3. – P. 275–289.
Romanenko K.O., Kosakovskaya I.V., Romanenko P.O. Phytohormones of microalgae: Biological role and involvement in the regulation of physiological processes, Pt II. Cytokinins and Gibberellins // International Journal on Algae. – 2016. – Vol. 18. – P. 179–201.
Sandberg M., Määttänen A., Peltonen J., Vuorela P.M., Fallarero A. Automating a 96-well microtitre plate model for Staphylococcus aureus biofilms: an approach to screening of natural antimicrobial compounds // International Journal of Antimicrobial Agents. – 2008. – Vol. 32. – № 3. – P. 233–240.
Sivaramakrishnan R., Incharoensakdi A. Plant hormone induced enrichment of Chlorella sp. omega-3 fatty acids // Biotechnology for biofuels. – 2020. – Vol. 13. –№ 1. https://doi.org/10.1186/s13068-019-1647-9.
Stirk W.A., Tarkowská D., Turečová V., Strnad M. Abscisic acid, gibberellins and brassinosteroids in Kelpak, a commercial seaweed extract made from Ecklonia maxima // Journal of Applied Phycology. – 2014. – Vol. 26. – № 1. – P. 561–567.
Subhash V., Rohit M.V., Devi M.P., Swamy Y.V. Temperature induced stress influence on biodiesel productivity during mixotrophic microalgae cultivation with wastewater // Bioresource Technology. – 2014. – Vol. 169. – P. 789–793.
Thi C., Dang T. Characterization of endogenous auxins and gibberellins produced by Chlorella sorokiniana (TH01) under phototrophic and mixtrophic cultivation modes toward applications in microalgal biorefinery and crop research // Journal of Chemistry. – 2020. – Vol. 4. – P. 1–11.
Wang C., Qi M., Guo J., Zhou C., Yan X. The Active Phytohormone in Microalgae: The characteristics, efficient detection, and their adversity resistance Applications // Molecules. – 2022. – Vol. 27. – № 1. – P. 46–46.
Wase N., Tu B., Allen J.W., Black P.N., DiRusso C.C. Identification and metabolite profiling of chemical activators of lipid accumulation in green algae // Plant Physiology. – 2017. – Vol. 174. – № 4. – P. 2146–2165.
Werner T., Schmülling T. Cytokinin action in plant development // Current Opinion in Plant Biology. – 2009. – Vol. 12. – № 5. – P. 527–538.
Wilson G. Microalgae for biotechnological applications: Cultivation, harvesting and biomass processing // Aquaculture. – 2020. – Vol. 528. – P. 562–735.
Wood E., Wingard L., Andersen R. Measuring growth rates in microalgal cultures // Algal Culturing Techniques. 2005.
Ziganshina E.E., Bulynina S.S., Ziganshin A.M. Growth characteristics of chlorella sorokiniana in a photobioreactor during the utilization of different forms of nitrogen at various temperatures // Plants. – 2022. – Vol. 11. – № 8. – P. 10–86.