Mechanoplasmonics in clusters of metal nanoparticles: theory and modeling

Authors

  • Аleksey Мikhailovich Serebrennikov Mining Institute UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2013.6.1.2

Keywords:

nonlinear plasmonics, metal nanoparticles, second harmonic generation, four-wave mixing

Abstract

In this work, the theoretical model explaining frequency scaling and multi photon effects in metal nanoparticles has been suggested. Its capabilities are demonstrated in relation to the second and third harmonic generation phenomena and the four-wave mixing phenomena as well. The continuum mechanical description of the electron gas of valence electrons underlies the theory. The principal equations of motion are deduced from Hamilton’s principle of least action. The compatibility of the model with the Drude theory is demonstrated in the linear case. On the basis of the proposed model we investigate the effect of Coulomb interaction in clusters of metal nanoparticles and the resulting motion of particles under the assumption of the compliance of an ambient medium.

Downloads

Download data is not yet available.

References

Bharadwaj P., Deutsch B., Novotny L. Optical antennas // Adv. Opt. Photon. - 2009. - V. 1, N. 3. - P. 438-483.
2. Lippitz M., van Dijk M.A., Orrit M. Third-harmonic generation from single gold nanoparticles // Nano Lett. - 2005. - V. 5, N. 4. - P. 799-802.
3. Bachelier G., Butet J., Russier-Antoine I., Jonin C., Benichou E., Brevet P.-F. Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions // Phys. Rev. B. - 2010. - V. 82. - 235403. DOI
4. Sleter Dz. Dielektriki, poluprovodniki, metally. - M.: Mir, 1969. - 647 s.
5. Drachev V.P., Chettiar U.K., Kildishev A.V., Yuan H.-K., Cai W., Shalaev V.M. The Ag dielectric function in plasmonic metamaterials // Opt. Express. - 2008. - V. 16, N. 2. - P. 1186-1195. DOI
6. Amendola V., Bakr O.M., Stellacci F. A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly // Plasmonics. - 2010. - V. 5, N. 1. - P. 85-97. DOI
7. Madelung O. Teoria tverdogo tela. - M.: Nauka, 1980. - 416 s.
8. Sriffer Dz. Teoria sverhprovodimosti. - M.: Nauka, 1970. - 312 s.
9. Klemmou F., Douerti Dz. Elektrodinamika castic i plazmy. - M.: Mir, 1996. - 528 s.
10. Kohn W. Nobel Lecture: Electronic structure of matter-wave functions and density functionals // Rev. Mod. Phys. - 1999. - V. 71, N. 5. - P. 1253-1266.
11. Bauer D., Ceccherini F. Time-dependent density functional theory applied to nonsequential multiple ionization of Ne at 800 nm // Opt. Express. - 2001. - V. 8, N. 7. - P. 377-382.
12. Landau L.D., Livsic E.M. Teoreticeskaa fizika: gidrodinamika. - M.: Nauka, 1986. - T. 6. - 736 s.
13. Stout B., Auger J.C., Devilez A. Recursive T matrix algorithm for resonant multiple scattering: applications to localized plasmon excitations // JOSA A. - 2008. - V. 25. - P. 2549-2557. DOI
14. Romero I., Aizpurua J., Bryant G.W., Garcia de Abajo F.J. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers // Opt. Express. - 2006. - V. 14, N. 21. - P. 9988-9999.
15. Letnes P.A., Simonsen I., Mills D.L. Substrate influence on the plasmonic response of clusters of spherical nanoparticles // Phys. Rev. B. - 2011. - V. 83, N. 7. - 075426.
16. Serebrennikov A.M. Multipolar resonant particle modes as elementary excitations in chain waveguides: Theory, dispersion relations and mathematical modeling // Opt. Commun. - 2011. - V. 284, N. 21. - P. 5043-5054.
17. Schumacher T., Kratzer K., Molnar D., Hentschel M., Giessen H., Lippitz M. Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle // Nat. Commun. - 2011. - V. 2. - Article number: 333. DOI
18. Serebrennikov A.M. A novel semi-analytic method for the analysis of scattering by dielectric objects immersed in uniform media // Comput. Phys. Commun. - 2010. - V. 181, N. 6. - P. 1087-1095.
19. Serebrennikov A.M. Matematiceskoe modelirovanie mul’tipol’nyh vzaimodejstvij v cepockah castic s pomos’u odnogo cislenno-analiticeskogo metoda // Vestnik PGTU. Elektrotehnika, informacionnye tehnologii, sistemy upravlenia. - Perm’: izd-vo PNIPU, 2011. - No 5. - S. 121-135.
20. Guzatov D.V., Klimov V.V. Optical properties of a two - nanospheroid cluster: analytical approach // LANL e-print. - 2010. - 45 p. (URL: http://lanl.arXiv.org: 1010.5760v1)
21. McMahon J.M., Gray S.K., Schatz G.C. Fundamental behavior of electric field enhancements in the gaps between closely spaced nanostructures // LANL e-print. - 2010. - 9 p. (URL: http://lanl.arXiv.org: 1008.2490v2)

Published

2013-04-27

Issue

Section

Articles

How to Cite

Serebrennikov А. М. (2013). Mechanoplasmonics in clusters of metal nanoparticles: theory and modeling. Computational Continuum Mechanics, 6(1), 12-22. https://doi.org/10.7242/1999-6691/2013.6.1.2