Молекулярно-динамическое моделирование осаждения медных нанокластеров с применением графических процессоров

Авторы

  • Mikhail Ozhgibesov National Cheng Kung University (NCKU)
  • Андрей Вячеславович Уткин Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН
  • Василий Михайлович Фомин Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН
  • Tzong-Shyng Leu National Cheng Kung University (NCKU)
  • Chin-Hsiang Cheng National Cheng Kung University (NCKU)

DOI:

https://doi.org/10.7242/1999-6691/2012.5.3.31

Ключевые слова:

молекулярная динамика, CUDA, параллельные вычисления, осаждение кластеров

Аннотация

В данной работе рассмотрены различные аспекты использования технологии CUDA применительно к решению задач молекулярной динамики. Созданный на основе CUDA комплекс программ позволил провести детальное исследование процесса столкновения медного кластера с металлической подложкой, имеющей углеродную пленку. Установлено, что осаждение кластера не наблюдается, если скорость его падения ниже критической скорости для заданного угла падения. Получена графическая зависимость между критическими значениями скорости и угла падения кластера на поверхность подложки.

Скачивания

Данные по скачиваниям пока не доступны.

Библиографические ссылки

Rost R.J. OpenGL shading language. - Addison Wesley, 2006. - 800 p.
Kilgard M.J. The Cg tutorial: The definitive guide to programmable real-time graphics. - Addison-Wesley Professional, 2003. - 384 p.
NVIDIA CUDA C Programming Guide Version 3.2. - NVIDIA Corporation: Santa Clara, 2010 - 170 p. http://www.serc.iisc.ernet.in/~vss/courses/PPP/CUDA_C_Programming_Guide.pdf (дата обращения 02.07.2012)
The Portland Group, T.P. PGI CUDA Fortran Compiler. - http://www.pgroup.com/resources/cudafortran.htm (дата обращения: 04.09.12).
Yang J., Wang Y., Chen Y. GPU accelerated molecular dynamics simulation of thermal conductivities // J. Comput. Phys. - 2007. - V. 221, N. 2. - P. 799-804. DOI
Ufimtsev I.S., Martinez T.J. Quantum chemistry on graphical processing units. 1. Strategies for two-electron integral evaluation // J. Chem. Theory Comput. - 2008. - V. 4, N. 2. - P. 222-231. DOI
Friedrichs M.S., Eastman P., Vaidyanathan V., Houston M., Legrand S., Beberg A.L., Ensign D.L., Bruns C.M., Pande V.S. Accelerating molecular dynamic simulation on graphics processing units // J. Comput. Chem. - 2009. - V. 30, N. 6. - P. 864-872. DOI
Maruyama S. Molecular Dynamics Method for Microscale Heat Transfer // Advances in Numerical Heat Transfer / Ed. W.J. Minkowycz and E.M. Sparrow. - Taylor & Francis, 2000. - V. 2. - P. 189-226.
Golovnev I.F., Golovneva E.I., Fomin V.M. Simulation of quasi-static processes in the crystals by molecular dynamics method // Phys. Mesomech. - 2003. - V. 6, N. 5-6. - P. 41-45.
Voter A.F. Embedded Atom Method Potentials for Seven FCC Metals: Ni, Pd, Pt, Cu, Ag, Au, and Al: Los Alamos Unclassified Technical Report / Los Alamos National Laboratory. - Los Alamos, 1993. - 9 p. - N. LA-UR 93-3901.
Китайгородский А.И. Молекулярные кристаллы. - М.: Наука, 1971. - 424 с.
Semyannikov P.P., Basova T.V., Trubin S.V., Kol’tsov E.K., Plyashkevich V.A., Igumenov I.K. Vapor pressure of some metal phthalocyanines // Russ. J. Phys. Chem. A. - 2008. - V. 82, N. 2. - P. 159-163.
Allen M.P., Tildesley D.J. Computer simulation of liquids. - Oxford Science Publications, 2000. - 385 p.
Verlet L. Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules // Phys. Rev. - 1967. - V. 159, N. 1. - P. 98-103. DOI
Hockney R.W., Eastwood J.W. Computer simulation using particles. - McGraw-Hill Inc., New-York, 1981. - 540 p.
Auerbach D.J., Paul W., Bakker A.F., Lutz C., Rudge W.E., Abraham F.F. A special purpose parallel computer for molecular dynamics: motivation, design, implementation, and application // J. Phys. Chem. - 1987. - V. 91, N. 19. - P. 4881-4890. DOI
Stone J.E., Hardy D.J., Ufimtsev I.S., Schulten K. GPU-accelerated molecular modeling coming of age // J. Mol. Graph. Model. - 2010. - V. 29, N. 2. - P. 116-125. DOI
Anderson J.A., Lorenz C.D., Travesset A. General purpose molecular dynamics simulations fully implemented on graphics processing units // J. Comput. Phys. - 2008. - V. 227, N. 10, - P. 5342-5359. DOI
Stone J.E., Phillips J.C., Freddolino P.L., Hardy D.J., Trabuco L.G., Schulten K. Accelerating molecular modeling applications with graphics processors // J. Comput. Chem. - 2007. - V. 28, N. 16. - P. 2618-2640. DOI
Nakano A. Multiresolution load balancing in curved space: the wavelet representation // Concurrency: Practice and Experience. -1999. - V. 11, N. 7. - P. 343-353. DOI
Deng Y., Peierls R.F., Rivera C. An adaptive load balancing method for parallel molecular dynamics simulations // J. Comput. Phys. - 2000. - V. 161, N. 1. - P. 250-263. DOI
Вахрушев А.В., Федотов А.Ю. Исследование вероятностных законов распределения структурных характеристик наночастиц, моделируемых методом молекулярной динамики // Вычисл. мех. сплош. сред. - 2009. - Т. 2, № 2. - С. 14-21. DOI

Загрузки

Опубликован

2012-10-01

Выпуск

Раздел

Статьи

Как цитировать

Ozhgibesov, M., Уткин, А. В., Фомин, В. М., Leu, T.-S., & Cheng, C.-H. (2012). Молекулярно-динамическое моделирование осаждения медных нанокластеров с применением графических процессоров. Вычислительная механика сплошных сред, 5(3), 265-273. https://doi.org/10.7242/1999-6691/2012.5.3.31