Численное моделирование пространственных волновых движений в моментных средах

Авторы

  • Владимир Михайлович Садовский Институт вычислительного моделирования СО РАН
  • Оксана Викторовна Садовская Институт вычислительного моделирования СО РАН
  • Мария Петровна Варыгина Институт вычислительного моделирования СО РАН

DOI:

https://doi.org/10.7242/1999-6691/2009.2.4.36

Ключевые слова:

динамика, упругость, моментная среда, параллельный вычислительный алгоритм, резонансная частота

Аннотация

Разработан вычислительный алгоритм для решения пространственных динамических задач моментной теории упругости Коссера на многопроцессорных вычислительных системах. Проведены расчеты трехмерной задачи Лэмба о действии сосредоточенной нагрузки на поверхности однородного упругого полупространства и задачи о действии сосредоточенной импульсной нагрузки, периодической по времени. Сформулированы условия симметрии, позволяющие многократно уменьшить объем вычислений. Численно обнаружены четыре типа волн - продольные, поперечные, крутильные и вращательные волны, - характерных для моментной упругой среды, а также колебания вращательного движения частиц на фронтах волн. Результаты анализа колебательных процессов показали, что моментная среда обладает собственной частотой акустического резонанса, который проявляется при определенных условиях возмущения и зависит только от инерционных свойств частиц микроструктуры и от параметров упругости материала.

Скачивания

Данные по скачиваниям пока не доступны.

Библиографические ссылки

Садовская О.В., Садовский В.М. Математическое моделирование в задачах механики сыпучих сред. - М.: Физматлит, 2008. - 368 с.
Садовская О.В. Численное решение пространственных динамических задач моментной теории упругости с граничными условиями симметрии // Ж. вычисл. матем. и матем. физики. - 2009. - Т. 49, № 2. - С. 313-322.
Cosserat E., Cosserat F. Theorie des Corps Deformables // Traité de Physique. Ed. O.D. Chwolson. - Paris, 1909. - P. 953-1173.
Пальмов В.А. Основные уравнения теории несимметричной упругости // ПММ. - 1964. - Т. 28, вып. 3. - С. 401-408.
Годунов С.К. Уравнения математической физики. - М.: Наука, 1979. - 391 с.
Behura J., Batzle M., Hofmann R., Dorgan J. Heavy oils: their shear story // Geophysics. - 2007. - V. 72, N. 5. - P. E175-E183.
Каменецкий В.Ф., Семенов А.Ю. Самосогласованное выделение разрывов при сквозных расчетах газодинамических течений // Ж. вычисл. матем. и матем. физики. - 1994. - Т. 34, № 10. - С. 1489-1502.
Куликовский А.Г., Погорелов Н.В., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. - М.: Физматлит, 2001. - 607 с.
Кулеш М.А., Матвеенко В.П., Шардаков И.Н. О распространении упругих поверхностных волн в среде Коссера // Доклады Академии наук. - 2005. - Т. 405, № 2. - С. 196-198.

Загрузки

Опубликован

2009-07-01

Выпуск

Раздел

Статьи

Как цитировать

Садовский, В. М., Садовская, О. В., & Варыгина, М. П. (2009). Численное моделирование пространственных волновых движений в моментных средах. Вычислительная механика сплошных сред, 2(4), 111-121. https://doi.org/10.7242/1999-6691/2009.2.4.36