Об идентификации характеристик неоднородных вязкоупругих тел в рамках модели дробного порядка

Авторы

  • Иван Викторович Богачев Южный федеральный университет, Институт математики, механики и компьютерных наук им. И.И. Воровича https://orcid.org/0000-0002-4725-5102
  • Александр Ованесович Ватульян Южный федеральный университет, Институт математики, механики и компьютерных наук им. И.И. Воровича; Южный математический институт – филиал ВНЦ РАН https://orcid.org/0000-0003-0444-4496

DOI:

https://doi.org/10.7242/1999-6691/2024.17.2.17

Ключевые слова:

вязкоупругость, дробно-дифференциальные модели, неоднородные материалы, акустический метод, обратные задачи, идентификация, регуляризация

Аннотация

Построение моделей вязкоупругих материалов со сложной неоднородной структурой является в настоящее время актуальной задачей механики сплошных сред. Наряду с классическими моделями все большее распространение получают дробно-дифференциальные модели вязкоупругости. В работе представлена модель установившихся колебаний неоднородных вязкоупругих тел с использованием дифференциальных операторов дробного порядка, и с учетом дробности порядка операторов приведен соответствующий вид комплексного модуля, описывающего свойства материала. Модуль включает четыре характеристики: мгновенный и длительный модули упругости (в случае неоднородного материала являющиеся функциями координат), время релаксации и параметр дробности. Исследованы свойства комплексного модуля, выяснены диапазоны значений параметров модели, при которых наиболее выпукло проявляются реологические свойства. Сформулирована общая постановка обратной задачи идентификации функций-параметров модели по данным акустического зондирования. В рамках этой постановки решены обратные задачи для конкретных объектов, а именно для вязкоупругих неоднородных стержня и круглой пластины. В обеих модельных задачах проанализирована связь параметра дробности с амплитудно-частотными характеристиками. Выявлено, что наиболее существенно параметр дробности влияет на параметры колебательного процесса в окрестности вязкоупругих резонансов. Для построения решения рассматриваемых нелинейных обратных задач применен метод линеаризации. На его основе предложены итерационные процессы, дополненные элементами проекционного подхода, позволяющего определять поправки к искомым функциям в заданных классах функций с помощью регуляризации. Для обеих обратных задач проведены серии вычислительных экспериментов, исходя из результатов которых сформулированы рекомендации по выбору оптимальных режимов зондирования.

Скачивания

Данные по скачиваниям пока не доступны.
Поддерживающие организации
Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации, Государственное задание в области научной деятельности, научный проект № FENW-2023-0012 (Богачев И.В.), и Южного математического института - филиала ВНЦ РАН в г. Владикавказ (Ватульян А.О.).

Библиографические ссылки

Шитикова М.В. Обзор вязкоупругих моделей с операторами дробного порядка, используемых в динамических задачах механики твердого тела // Известия Российской академии наук. Механика твердого тела. 2022. № 1. C. 3–40. DOI: 10.31857/S0572329921060118.

Kieback B., Neubrand A., Riedel H. Processing techniques for functionally graded materials // Materials Science and Engineering: A. 2003. Vol. 362. P. 81–106. DOI: 10.1016/S0921-5093(03)00578-1.

Кербер М.Л., Виноградов В.М., Головкин Г.С. Полимерные композиционные материалы: структура, свойства,технология / под ред. А. Берлина. СПб.: Профессия, 2008. 560 с.

Ватульян А.О. Коэффициентные обратные задачи механики. М.: Физматлит, 2019. 272 с.

Rossikhin Y.A. Reflections on Two Parallel Ways in the Progress of Fractional Calculus in Mechanics of Solids // Applied Mechanics Reviews. 2010. Vol. 63, no. 1. 010701. DOI: 10.1115/1.4000246.

Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. London: Imperial College Press, 2010. 368 p.

Bonfanti A., Kaplan J.L., Charras G., Kabla A. Fractional viscoelastic models for power-law materials // Soft Matter. 2020. Vol. 16, no. 26. P. 6002–6020. DOI: 10.1039/d0sm00354a.

Огородников Е.Н., Радченко В.П., Унгарова Л.Г. Математические модели нелинейной вязкоупругости с операторами дробного интегро-дифференцирования // Вестник Пермского национального исследовательского политехнического университета. Механика. 2018. № 2. C. 147–161. DOI: 10.15593/perm.mech/2018.2.13.

Унгарова Л.Г. Применение линейных дробных аналогов реологических моделей в задаче аппроксимации экспериментальных данных по растяжению поливинилхлоридного пластиката // Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 2016. Т. 20, № 4. C. 691–706. DOI: 10.14498/vsgtu1523.

Nonnenmacher T.F., Glöckle W.G. A fractional model for mechanical stress relaxation // Philosophical Magazine Letters. 1991. Vol. 64, no. 2. P. 89–93. DOI: 10.1080/09500839108214672.

Pritz T. Analysis of Four-Parameter Fractional Derivative Model of Real Solid Materials // Journal of Sound and Vibration. 1996. Vol. 195. P. 103–115. DOI: 10.1006/jsvi.1996.0406.

Pritz T. Five-parameter fractional derivative model for polymeric damping materials // Journal of Sound and Vibration. 2003. Vol. 265, no. 5. P. 935–952. DOI: 10.1016/S0022-460X(02)01530-4.

Costa M.F.P., Ribeiro C. A modified fractional Zener model to describe the behaviour of a carbon fibre reinforced polymer // AIP Conference Proceedings. 2013. Vol. 1558. P. 606–609. DOI: 10.1063/1.4825564.

Wei L.F., Li W., Feng Z.Q., Liu J.T. Applying the fractional derivative Zener model to fitting the time-dependent material viscoelasticity tested by nanoindentation // Biosurface and Biotribology. 2018. Vol. 4. P. 58–67. DOI: 10.1049/bsbt.2018.0011.

Ciniello A.P.D., Bavastri C.A., Pereira J.T. Identifying Mechanical Properties of Viscoelastic Materials in Time Domain Using the Fractional Zener Model // Latin American Journal of Solids and Structures. 2017. Vol. 14. P. 131–152. DOI: 10.1590/1679-78252814.

Pawlak Z.M., Denisiewicz A. Identification of the Fractional Zener Model Parameters for a Viscoelastic Material over a Wide Range of Frequencies and Temperatures // Materials. 2021. Vol. 14, no. 22. 7024. DOI: 10.3390/ma14227024.

Carmichael B., Babahosseini H., Mahmoodi S.N., Agah M. The fractional viscoelastic response of human breast tissue cells // Physical Biology. 2015. Vol. 12, no. 4. 046001. DOI: 10.1088/1478-3975/12/4/046001.

Dai Z., Peng Y., Mansy H.A., Sandler R.H., Royston T.J. A model of lung parenchyma stress relaxation using fractional viscoelasticity // Medical Engineering & Physics. 2015. Vol. 37. P. 752–758. DOI: 10.1016/j.medengphy.2015.05.003.

Алероев Т.С., Ерохин С.В. Параметрическая идентификация порядка дробной производной в модели Бегли–Торвика // Математическое моделирование. 2018. Т. 30, № 7. C. 93–102. DOI: 10.31857/S023408790000578-9.

Vatulyan A.O., Yavruyan O.V., Bogachev I.V. Reconstruction of inhomogeneous properties of orthotropic viscoelastic layer // International Journal of Solids and Structures. 2014. Vol. 51, no. 11/12. P. 2238–2243. DOI: 10.1016/j.ijsolstr.2014.02.032.

Аникина Т.А., Богачев И.В., Ватульян А.О., Дударев В.В. Идентификация неоднородных свойств вязкоупругой круглой пластины // Экологический вестник научных центров Черноморского экономического сотрудничества. 2016. № 2. C. 10–18.

Богачев И.В., Ватульян А.О., Дударев В.В., Недин Р.Д. Исследование влияния предварительного состояния на механические свойства вязкоупругих тел // Вестник Пермского национального исследовательского политехнического университета. Механика. 2019. № 2. C. 15–24. DOI: 10.15593/perm.mech/2019.2.02.

Ватульян А.О., Варченко А.А., Юров В.О. Исследование коэффициентных обратных задач с учетом реологии для функционально-градиентных стержней // Известиявузов.Северо-Кавказский регион. Серия: Естественные науки. 2023. № 3. C. 4–12. DOI: 10.18522/1026-2237-2023-3-4-12.

Богачев И.В., Ватульян А.О., Дударев В.В. Об одном методе идентификации свойств многослойных мягких биологических тканей // Российский журнал биомеханики. 2013. Т. 13, № 3. C. 37–48.

Богачев И.В., Недин Р.Д. Идентификация характеристик предварительно напряженного кожного покрова // Российский журнал биомеханики. 2021. Т. 25, № 3. C. 331–342. DOI: 10.15593/RZhBiomeh/2021.3.08.

Трусделл К.А. Первоначальный курс рациональной механики сплошных сред. М.: Мир, 1975. 592 с.

Кристенсен Р. Введение в теорию вязкоупругости. М.: Мир, 1974. 338 с.

Справочник по специальным функциям с формулами, графиками и математическими таблицами / под ред. М. Абрамовица, И. Стигана. М.: Наука, 1979. 832 с.

Флетчер К. Численные методы на основе метода Галеркина. М.: Мир, 1988. 352 с.

Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1986. 288 с.

Загрузки

Опубликован

2024-07-31

Выпуск

Раздел

Статьи

Как цитировать

Богачев, И. В., & Ватульян, А. О. (2024). Об идентификации характеристик неоднородных вязкоупругих тел в рамках модели дробного порядка. Вычислительная механика сплошных сред, 17(2), 182-193. https://doi.org/10.7242/1999-6691/2024.17.2.17