On the features of identification of variable thermomechanical characteristics of a functionally graded rectangle

Authors

DOI:

https://doi.org/10.7242/1999-6691/2023.16.4.42

Keywords:

inverse problem, thermoelasticity, functionally graded material, rectangle, shooting method, identification, iterative process, Fredholm integral equation of the 1st kind

Abstract

The inverse thermoelastic problem of identification of the variable properties of a functionally graded rectangle is studied. Unsteady vibrations are excited by applying mechanical and thermal loads to the upper side of the rectangle. To solve the direct problem in Laplace transforms, the method of separation of variables and the shooting method for harmonics are used. Transformants are inverted by expanding the origin in terms of shifted Legendre polynomials. The method proposed for solving the direct problem is verified by comparison with a finite element solution. The influence of the laws of change of variable characteristics on the boundary physical fields is analyzed. The displacement components give additional information on the mechanical loading, and the temperature measured on the upper side of the rectangle over a certain time interval – on the thermal loading. Assuming that the additional information admits expansion in Fourier series, the two-dimensional inverse problem is reduced to one-dimensional problems for various harmonics. The solution of the obtained nonlinear inverse problems is carried out on the basis of an iterative process, at each stage of which, in order to find corrections for thermomechanical characteristics, systems of Fredholm integral equations of the 1st kind are solved. The possibility of simultaneous reconstruction of several characteristics is investigated. The results of computational experiments on the phased reconstruction of thermomechanical characteristics are presented. The influence of the thermomechanical coupling parameter on the results of the thermal stress coefficient reconstruction was clarified.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при финансовой поддержке Российского научного фонда (проект № 22-11-00265), https://rscf.ru/project/22-11-00265/, в Южном федеральном университете.

References

Birman V., Byrd L.W. Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev., 2007, vol. 60, pp. 195-216. https://doi.org/10.1115/1.2777164

Wetherhold R.C., Seelman S., Wang J. The use of functionally graded materials to eliminated or control thermal deformation. Compos. Sci. Tech., 2014, vol. 56, pp. 1099-1104. https://doi.org/10.1016/0266-3538(96)00075-9

Raddy J.N., Chin C.D. Thermoelastic analysis of functionally graded cylinders and plates. J. Therm. Stresses, 1998, vol. 21, pp. 593-626. https://doi.org/10.1080/01495739808956165

Kulchytsky-Zhyhailo R., Bajkowski A. Analytical and numerical methods of solution of three-dimensional problem of elasticity for functionally graded coated half-space. Int. J. Mech. Sci., 2012, vol. 54, pp. 105-112. https://doi.org/10.1016/j.ijmecsci.2011.10.001

Nedin R.D. Modeling and frequency analysis of prestressed functional gradient plates with holes. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2019, vol. 12, no. 2, pp. 192-201. https://doi.org/10.7242/1999-6691/2019.12.2.17

Vatulyan A., Nesterov S., Nedin R. Regarding some thermoelastic models of “coating-substrate” system deformation. Continuum Mech. Thermodyn., 2020, vol. 32, pp. 1173-1186. https://doi.org/10.1007/s00161-019-00824-9

Nedin R., Nesterov S., Vatulyan A. On an inverse problem for inhomogeneous thermoelastic rod. Int. J. Solid. Struct., 2014, vol. 51, pp. 767-773. https://doi.org/10.1016/j.ijsolstr.2013.11.003

Vatulyan A.O., Nesterov S.A. The dynamic problem of thermoelectroelasticity for a functionally gradient layer. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2017, vol. 10, no. 2, pp. 117-126. https://doi.org/10.7242/1999-6691/2017.10.2.10

Belyankova T.I., Kalinchuk V.V. Features of the propagation of Love waves in elastic functional-gradient coatings. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2017, vol. 10, no. 1, pp. 39-52. https://doi.org/10.7242/1999-6691/2017.10.1.4

Vatulyan A.O., Dudarev V.V. On the study of vibrations of a cylinder with a viscoelastic coating. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2021, vol. 14, no. 3, pp. 312-321. https://doi.org/10.7242/1999-6691/2021.14.3.26

Vatulyan A.O., Nesterov S.A. On determination of the thermomechanical characteristics of a functionally graded finite cylinder. Mech. Solids, 2021, vol. 56, pp. 1429-1438. https://doi.org/10.3103/S0025654421070256

Alifanov O.M., Budnik S.A., Nenarokomov A.V., Netelev A.V., Okhapkin A.S., Chumakov V.A. Investigation of thermophysical properties of gradient materials by the method of inverse problems. J. Eng. Phys. Thermophy., 2022, vol. 95, pp. 1015-1025. https://doi.org/10.1007/s10891-022-02560-5

Cao K., Lesnic D. Determination of space-dependent coefficients from temperature measurements using the conjugate gradient method. Numer. Meth. Part. Differ. Equat., 2018, vol. 34, pp. 1370-1400. https://doi.org/10.1002/num.22262

Geymonat G., Pagano S. Identification of mechanical properties by displacement field measurement: A variational approach. Meccanica, 2003, vol. 38, pp. 535-545. https://doi.org/10.1023/A:1024766911435

Avril S., Pierron F. General framework for the identification of constitutive parameters from full-field measurements in linear elasticity. Int. J. Solid. Struct., 2007, vol. 44, pp. 4978-5002. https://doi.org/10.1016/j.ijsolstr.2006.12.018

Vatulyan A.O., Yavruyan O.V., Bogachev I.V. Identifying the elastic properties of an inhomogeneously thick layer. Acoust. Phys., 2011, vol. 57, pp. 741-748. https://doi.org/10.1134/S1063771011060182

Bogachev I.V., Vatul’yan A.O., Yavruyan O.V. Identification of the properties of an inhomogeneous electroelastic medium. J. Appl. Math. Mech., 2012, vol. 76, pp. 506-510. https://doi.org/10.1016/j.jappmathmech.2012.11.016

Vatul’yan A.O., Uglich P.S. Reconstruction of inhomogeneous characteristics of a transverse inhomogeneous layer in antiplane vibrations. J. Appl. Mech. Tech. Phy., 2014, vol. 55, p. 499-505. https://doi.org/10.1134/S0021894414030122

Sinitsa A.V., Capsoni A. Design of novel inverse analysis methodology for exact estimation of elasticity parameters in thermoelastic stress model. Int. Comm. Heat Mass Tran., 2022, vol. 135, 106096. https://doi.org/10.1016/j.icheatmasstransfer.2022.106096

Vestyak V.A., Zemskov A.V., Erikhman N.N. Chislenno-analiticheskoye resheniye obratnoy koeffitsiyentnoy zadachi termouprugosti dlya plastiny [Numerical-analytical solution of the inverse coefficient problem of thermoelasticity for a plate]. Vestnik Moskovskogo aviatsionnogo instituta – Aerospace MAI Journal, 2009, vol. 16, no. 6, pp. 244-249.

Lukasievicz S.A., Babaei R., Qian R.E. Detection of material properties in a layered body by means of thermal effects. J. Therm. Stresses, 2003, vol. 26, pp. 13-23. https://doi.org/10.1080/713855763

Lomazov V.A. Zadachi diagnostiki neodnorodnykh termouprugikh sred [Diagnostics problems for inhomogeneous thermoelastic media]. Orel, OrelGTU, 2002. 168 p.

Vatul’yan A.O., Nesterov S.A. Koeffitsiyentnyye obratnyye zadachi termomekhaniki [Coefficient inverse problems of thermomechanics]. Rostov-on-Don, Southern Federal University Publ., 2022. 178 p.

Vatulyan A.O., Nesterov S.A. Numerical realization of the iterative scheme for solving inverse thermoelasticity problems for inhomogeneous bodies with coatings. Vychislitel’nyye tekhnologii – Computational technologies, 2017, vol. 22, no. 5, p. 14 26.

Vatul’yan A.O., Nesterov S.A. On determination of inhomogeneous thermomechanical characteristics of a pipe. J. Eng. Phys. Thermophy., 2015, vol. 88, pp. 984-993. https://doi.org/10.1007/s10891-015-1274-7

Nedin R.D., Nesterov S.A., Vatulyan A.O. Concerning identification of two thermomechanical characteristics of functionally graded pipe. Solid mechanics, theory of elasticity and creep, ed. H. Altenbachet, S.M. Mkhitaryan, V. Hakobyan, A.V. Sahakyan. Springer Cham, 2023. Pp. 247-264. https://doi.org/10.1007/978-3-031-18564-9_18

Vatulyan A.O., Nesterov S.A. On the identification problem of the thermomechanical characteristics of the finite functionally graded cylinder. Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 2021, vol. 21, no. 1, pp. 35-47. https://doi.org/10.18500/1816-9791-2021-21-1-35-47

Krylov V.I., Skoblya N.S. Metody priblizhennogo preobrazovaniya Fur’ye i obrashcheniya preobrazovaniya Laplasa [Approximate Fourier transform and Laplace transform inversion methods]. Moscow, Nauka, 1974. 224 p.

Tikhonov A.N., Goncharskiy A.V., Stepanov V.V., Yagola A G. Chislennyye metody resheniya nekorrektnykh zadach [Numerical methods for solving ill-posed problems]. Moscow, Nauka, 1990. 230 p.

Published

2024-01-04

Issue

Section

Articles

How to Cite

Vatulyan, A. O., & Nesterov, S. A. (2024). On the features of identification of variable thermomechanical characteristics of a functionally graded rectangle. Computational Continuum Mechanics, 16(4), 504-516. https://doi.org/10.7242/1999-6691/2023.16.4.42