Конечно-элементное моделирование эффективных свойств анизотропных упругих материалов со случайной наноразмерной пористостью

Авторы

  • Андрей Викторович Наседкин Южный федеральный университет
  • Александр Сергеевич Корниевский Южный федеральный университет

DOI:

https://doi.org/10.7242/1999-6691/2017.10.4.29

Ключевые слова:

пористый упругий композит, наноразмерные поры, модель Гуртина-Мурдоха, поверхностные напряжения, эффективные модули, моделирование представительных объемов, метод конечных элементов

Аннотация

Представлен комплексный подход к определению эффективных свойств анизотропных пористых упругих материалов со стохастической наноразмерной структурой пористости, включающий метод эффективных модулей механики композитов, моделирование представительных объемов и метод конечных элементов. Наноразмерность пор вводится в постановку задачи путем использования модели Гуртина-Мурдоха поверхностных напряжений на границах материала с порами. Общая методология отыскания эффективных свойств пористой среды продемонстрирована на двухфазном композите со специальными условиями, налагаемыми на скачки напряжений на границах раздела фаз. Описаны постановки краевых задач и результирующие формулы для вычисления полного набора эффективных констант двухфазного композита с произвольными типами анизотропии фаз и поверхностных свойств; сформулированы обобщенные постановки и приведены конечно-элементные аппроксимации. Отмечается, что задачи гомогенизации среды решаются с помощью известного конечно-элементного программного обеспечения при выборе для учета поверхностных межфазных напряжений оболочечных конечных элементов с опциями мембранных напряжений. Показано, что процедуры гомогенизации пористых композитов с поверхностными напряжениями могут рассматриваться как частные случаи соответствующих процедур для двухфазных композитов с межфазными напряжениями при пренебрежимо малых модулях жесткости нановключений. Конкретная реализация обсуждаемого подхода выполнена в кончено-элементном программном комплексе ANSYS. Описан алгоритм автоматического нахождения межфазных границ и размещения на них оболочечных элементов, сохраняющий работоспособность при различных размерах представительных объемов, построенных в форме кубической решетки из гексаэдральных конечных элементов. Алгоритм апробирован на моделях пористого материала гексагональной сингонии, отличающихся друг от друга значениями поверхностных модулей, пористостью и количеством пор. Выявлено влияние величины площади межфазных границ на эффективные модули пористого материала наноразмерной структуры.

Скачивания

Данные по скачиваниям пока не доступны.

Библиографические ссылки

Eremeyev V.A. On effective properties of materials at the nano- and microscales considering surface effects // Acta Mech. - 2016. - Vol. 227, no. 1. - P. 29-42.
2. Hamilton J.C., Wolfer W.G. Theories of surface elasticity for nanoscale objects // Surf. Sci. - 2009. - Vol. 603, no. 9. - P. 1284-1291.
3. Wang J., Huang Z., Duan H., Yu S., Feng X., Wang G., Zhang W., Wang T. Surface stress effect in mechanics of nanostructured materials // Acta Mech. Solida Sin. - 2011. - Vol. 24, no. 1. - P. 52-82.
4. Wang K.F., Wang B.L., Kitamura T. A review on the application of modified continuum models in modeling and simulation of nanostructures // Acta Mech. Sinica. - 2016. - Vol. 32, no. 1. - P. 83-100.
5. Gurtin M.E., Murdoch A.I. A continuum theory of elastic material surfaces // Arch. Ration Mech. An. - 1975. - Vol. 57, no. 4. - P. 291-323.
6. Chatzigeorgiou G., Javili A., Steinmann P. Multiscale modelling for composites with energetic interfaces at the micro- or nanoscale // Math. Mech. Solids. - 2015. - Vol. 20, no. 9. - P. 1130-1145.
7. Duan H.L., Wang J., Huang Z.P., Karihaloo B.L. Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress // J. Mech. Phys. Solids. - 2005. - Vol. 53, no. 7. - P. 1574-1596.
8. Javili A., Steinmann P., Mosler J. Micro-to-macro transition accounting for general imperfect interfaces // Comput. Method. Appl. M. - 2017. - Vol. 317. - P. 274-317.
9. Le Quang H., He Q.-C. Variational principles and bounds for elastic inhomogeneous materials with coherent imperfect interfaces // Mech. Mater. - 2008. - Vol. 40, no. 10. - P. 865-884.
10. Brisard S., Dormieux L., Kondo D. Hashin-Shtrikman bounds on the bulk modulus of a nanocomposite with spherical inclusions and interface effects // Comp. Mater. Sci. - 2010. - Vol. 48, no. 3. - P. 589-596.
11. Brisard S., Dormieux L., Kondo D. Hashin-Shtrikman bounds on the shear modulus of a nanocomposite with spherical inclusions and interface effects // Comp. Mater. Sci. - 2010. - Vol. 50, no. 2. - P. 403-410.
12. Chen T., Dvorak G.J., Yu C.C. Solids containing spherical nano-inclusions with interface stresses: Effective properties and thermal-mechanical connections // Int. J. Solids Struct. - 2007. - Vol. 44, no. 3-4. - P. 941-955.
13. Duan H.L., Wang J., Huang Z.P., Karihaloo B.L. Eshelby formalism for nano-inhomogeneities // P. Roy. Soc. Lond. A. - 2005. - Vol. 461. - P. 3335-3353.
14. Duan H.L., Wang J., Karihaloo B.L., Huang Z.P. Nanoporous materials can be made stiffer than non-porous counterparts by surface modification // Acta Mater. - 2006. - Vol. 54, no. 11. - P. 2983-2990.
15. Еремеев В.А., Морозов Н.Ф. Об эффективной жесткости нанопористого стержня // ДАН. - 2010. - Т. 432, № 4. - С. 473-476.
16. Jeong J., Cho M., Choi J. Effective mechanical properties of micro/nano-scale porous materials considering surface effects // Interaction and Multiscale Mechanics. - 2011. - Vol. 4, no. 2. - P. 107-122.
17. Kushch V.I., Mogilevskaya S.G., Stolarski H.K., Crouch S.L. Elastic interaction of spherical nanoinhomogeneities with Gurtin-Murdoch type interfaces // J. Mech. Phys. Solids. - 2011. - Vol. 59, no. 9. - P. 1702-1716.
18. Nazarenko L., Bargmann S., Stolarski H. Energy-equivalent inhomogeneity approach to analysis of effective properties of nanomaterials with stochastic structure // Int. J. Solids Struct. - 2015. - Vol. 59. - P. 183-197.
19. Nasedkin A.V., Kornievsky A.S. Finite element modeling and computer design of anisotropic elastic porous composites with surface stresses / Wave dynamics and mechanics of composites for analysis of microstructured materials and metamaterials. Ser. Advanced Structured Materials. - 2017. - Vol. 59. - P. 107-122.
20. Nasedkin A.V., Nasedkina A.A., Kornievsky A.S. Modeling of nanostructured porous thermoelastic composites with surface effects // AIP Conf. Proc. - 2017. - Vol. 1798. - 020110.
21. Nasedkin A.V., Nasedkina A.A., Kornievsky A.S. Finite element modeling of effective properties of nanoporous thermoelastic composites with surface effects // Coupled Problems 2017 - Proceedings of the VII International Conference on Coupled Problems in Science and Engineering, 12-14 June 2017, Rhodes Island, Greece. - P. 1140-1151.
22. Tian L., Rajapakse R.K.N.D. Finite element modelling of nanoscale inhomogeneities in an elastic matrix // Comp. Mater. Sci. - 2007. - Vol. 41, no. 1. - P. 44-53.
23. Riaz U., Ashraf S.M. Application of finite element method for the design of nanocomposites // Computational finite element methods in nanotechnology / Ed. by S.M. Musa. - CRC Press, 2012. - Ch. 7. - P. 241-290.
24. Smith J.F., Arbogast C.L. Elastic constants of single crystal beryllium // J. Appl. Phys. - 1960. - Vol. 31. - P. 99-101.
25. Наседкин А.В., Наседкина А.А., Ремизов В.В. Конечно-элементное моделирование пористых термоупругих композитов с учетом микроструктуры // Вычисл. мех. сплош. сред. - 2014. - Т. 7, № 1. - С. 100-109.
26. Kurbatova N.V., Nadolin D.K., Nasedkin A.V., Nasedkina A.A., Oganesyan P.A., Skaliukh A.S., Soloviev A.N. Models of active bulk composites and new opportunities of ACELAN finite element package / Wave dynamics and mechanics of composites for analysis of microstructured materials and metamaterials. Ser. Advanced Structured Materials. - 2017. - Vol. 59. - P. 133-158.

Загрузки

Опубликован

2017-12-31

Выпуск

Раздел

Статьи

Как цитировать

Наседкин, А. В., & Корниевский, А. С. (2017). Конечно-элементное моделирование эффективных свойств анизотропных упругих материалов со случайной наноразмерной пористостью. Вычислительная механика сплошных сред, 10(4), 375-387. https://doi.org/10.7242/1999-6691/2017.10.4.29