Численное исследование влияния аксиальных вибраций конечной амплитуды и частоты на течения и деформации поверхности жидкой зоны в условиях невесомости

  • Татьяна Петровна Любимова Институт механики сплошных сред УрО РАН; Пермский государственный национальный исследовательский университет
  • Янина Николаевна Паршакова Институт механики сплошных сред УрО РАН
  • Роберт Владиславович Скуридин Институт механики сплошных сред УрО РАН
Ключевые слова: жидкая зона, аксиальные вибрации, среднее течение, волны на поверхности раздела, прямое численное моделирование

Аннотация

Вибрационное воздействие на неоднородные среды является одним из механизмов управления процессами, происходящими в этих средах. Для гидродинамических систем вибрации могут сильно влиять на характер движения и форму поверхности раздела и приводить к поведению, которое значительно отличается от поведения в статических полях. В настоящей работе численно исследуются течения и деформации поверхности цилиндрической жидкой зоны, окруженной коаксиальным слоем газа. Сверху и снизу система ограничена параллельными твердыми пластинами, совершающими аксиальные вибрации с конечной амплитудой и частотой. Задача решается для условий невесомости. Цель работы состоит в исследовании и объяснении природы новых вибрационных явлений, наблюдаемых в экспериментах. Расчеты проводятся в рамках полной неосредненной постановки с использованием метода объема жидкости. Получены данные о мгновенных и средних полях скорости и мгновенной и средней форме поверхности раздела жидкость-газ при различных частотах и амплитудах вибраций. Показано, что аксиальные вибрации торцев генерируют волны на поверхности раздела, распространяющиеся внутрь к центру зоны. Поверхностными волнами индуцируется среднее течение, направленное вблизи поверхности раздела от колеблющихся пластин к центру жидкой зоны. Кроме того, при наличии вибраций вблизи твердых пластин возникает среднее течение в виде тороидальных вихрей с направлением движения от поверхности раздела к оси зоны. В условиях неоднородного нагрева вблизи поверхности раздела цилиндрической жидкой зоны формируется термокапиллярное течение, влияние вибраций на которое также изучается в статье. Показано, что вибрации приводят к подавлению интенсивности термокапиллярной конвекции.

Литература


  1. Strutt J.W. (Baron Rayleigh). The theory of sound. Macmillan, 1877. Vol. 1. 984 p.

  2. Schlichting H., Gersten K. Boundary-layer theory. Springer, 2000. 817 p. https://doi.org/10.1007/978-3-642-85829-1

  3. Longuet-Higgins M.S. Mass transport in water waves // Phil. Trans. Roy. Soc. Lond. Math. Phys. Sci. 1953. Vol. 245. P. 535‑581. https://doi.org/10.1098/rsta.1953.0006

  4. Gershuni G.Z., Lyubimov D.V. Thermal vibrational convection. Wiley, 1998. 372 p.

  5. Wolf G.H. The dynamic stabilization of the Rayleigh–Taylor instability and the corresponding dynamic equilibrium // Z. Physik. 1969. Vol. 227. P. 291-300. https://doi.org/10.1007/BF01397662

  6. Любимов Д.В., Черепанов А.А. О возникновении стационарного рельефа на поверхности раздела жидкостей в вибрационном поле // Изв. АН СССР. МЖГ. 1986. № 6. С. 8-13. (English version https://doi.org/10.1007/BF02628017)

  7. Любимов Д.В., Любимова Т.П. Об одном методе сквозного счета для решения задач с деформируемой поверхностью раздела // Моделирование в механике. 1990. Т. 4(21), № 1. С. 136-140.

  8. Lyubimov D.V., Cherepanov A.A., Lyubimova T.P., Roux B. Orienting effect of vibrations on interfaces // C.R.Acad. Sci. Paris. 1997. Vol. 325. Serie IIb. P. 391-396.

  9. Любимов Д.В., Хеннер М.В., Шоц М.М. Об устойчивости поверхности раздела жидкостей при касательных вибрациях // Изв. РАН. МЖГ. 1998. № 3. С. 25-31. (English version https://doi.org/10.1007/BF02698179)

  10. Khenner M.V., Lyubimov D.V., Belozerova T.S., Roux B. Stability of plane-parallel vibrational flow in a two-layer system // Eur. J. Mech. B Fluids. 1999. Vol. 18. P. 1085-1101. https://doi.org/10.1016/S0997-7546(99)00143-0

  11. Lyubimov D., Lyubimova T., Roux B. Mechanisms of vibrational control of heat transfer in a liquid bridge // Int. J. Heat Mass Tran. 1997. Vol. 40. P. 4031-4042. https://doi.org/10.1016/S0017-9310(97)00053-7

  12. Lyubimov D.V., Lyubimova T.P., Skuridin R.V., Chen G., Roux B. Numerical investigation of meniscus deformation and flow in an isothermal liquid bridge subject to high-frequency vibrations under zero gravity conditions // Comput. Fluid. 2002. Vol. 31. P. 663-682. https://doi.org/10.1016/S0045-7930(01)00078-0

  13. Lyubimova T.P., Scuridin R.V., Cröll A., Dold P. Influence of high frequency vibrations on fluid flow and heat transfer in a floating zone // Cryst. Res. Technol. 2003. Vol. 38. P. 635-653. https://doi.org/10.1002/crat.200310078

Опубликован
2019-12-30
Как цитировать
Любимова, Т. П., Паршакова, Я. Н., & Скуридин, Р. В. (2019). Численное исследование влияния аксиальных вибраций конечной амплитуды и частоты на течения и деформации поверхности жидкой зоны в условиях невесомости. Вычислительная механика сплошных сред, 12(4), 455-461. https://doi.org/https://doi.org/10.7242/1999-6691/2019.12.4.39
Раздел
Статьи