КОРРОЗИОННЫЕ И ТРИБОТЕХНИЧЕСКИЕ СВОЙСТВА ЛЕГИРОВАННЫХ ЧУГУНОВ ТИПА «НИИРЕЗИСТ» С ШЛАСТИНЧАТОЙ И ШАРОВИДНОЙ ФОРМОЙ ГРАФИТА

Н.В. Безматерных, начальник лаборатории материаловедения, 3AO «Новомет-Пермь»

И.В. Матыгуллина, инженер-исследователь лаборатории материаловедения, 3AO «Новомет-Пермь»

Т.А. Сюр, кандидат химических наук, начальник отдела защиты от коррозии, филиал ООО «ЛУКОЙЛ-Инжиниринг» «ПермНИПИнефть» в г. Перми

В.И. Кичигин, кандидат химических наук, ведущий научный сотрудник, Естественнонаучный институт Пермского государственного национального исследовательского университета

Н.А. Кичигина, кандидат технических наук, старший научный сотрудник, филиал ООО «ЛУКОЙЛ-Инжиниринг» «ПермНИПИнефть» в г. Перми

Проведен сравнительный анализ структуры, механических свойств, коррозионной стойкости и триботехнических характеристик аустенитных чугунов типа «нирезист» марки ЧН12Д2Г5ХМ и марки ЧН16Д7ГХ с шаровидной и пластинчатой формой графита и оценена возможность изготовления рабочих органов погружных центробежных насосов нефтедобычи.

Исследования проводились на отливках из аустенитных чугунов типа «нирезист» марок ЧН12Д2Г5ХМ и ЧН16Д7ГХ, изготовленных методом литья по выплавляемым моделям.

Целью исследования являлся сравнительный анализ структуры и свойств заготовок из аустенитных чугунов типа «нирезист» марки ЧН12Д2Г5ХМ и марки ЧН16Д7ГХ для оценки возможности изготовления рабочих органов погружных центробежных насосов нефтедобычи.

Методики эксперимента. Состав чугунов определяли методом эмиссионного спектрального анализа на спектрометре ДФС-71.

Металлографический анализ осуществляли на микроскопе OLIMPUS GX-51, ×100–500. Структуру выявляли путем травления реактивом Обергоффера (25 г FeCl₂, 25 мл HCl, 60 мл воды). Микроструктуру чугуна оценивали по ГОСТ 3443-87.

Дюрометрический анализ проводили с использованием твердомера Бринелля ТШ-2М по методике ГОСТ 9012-59. Механические свойства при растяжении определяли на испытательной машине ЦД-10 в соответствии с ГОСТ 27208-87 на образцах по ГОСТ 27208-87.

Коррозионные испытания проводили гравиметрическим и электрохимическим (поляризационные измерения) методами по ГОСТ 9.506-87 в статических (без перемешивания раствора) и динамических (с перемешиванием) условиях при температуре 20 и 80 °C. В качестве рабочих сред применяли:

1. Водный раствор 5 % NaCl + 3 % HCl, pH = 1,3.

2. Водный раствор 5 % NaCl + 0,5 % CH₃COOH + 2400–3000 мг/л H₂S (состав, приведенный в NACE TM 01-77), pH = 3,5.

3. Модель пластовой воды № 2 (МПВ № 2) по ГОСТ 9.506-87 состава, г/л: CaCl₂·6H₂O – 34, MgCl₂·6H₂O – 17, NaCl – – 163, CaSO₄·2H₂O – 0,14, pH = 6,6.

4. МПВ № 2 (по ГОСТ 9.506-87) + + 20 мг/л H₂S, pH = 5,1.

5. Водный раствор 3 % NaCl, pH = 6,6.

Выдержку образцов в агрессивной среде при коррозионных испытаниях гравиметрическим методом проводили с использованием ультратермостата MWL UH-16. Точность поддержания температуры контролировали с помощью ртутного термометра. Время выдержки образцов в растворе № 1 составляло 24 ч, в растворах № 2 и 3 – по 96 ч. Взвешивание образцов до и после испытаний осуществляли на аналитических весах «МЕТТLER TOLEDO» с точностью ± 0,0001 г.

Скорость коррозии K в г/м² ч вычисляли по формуле

$$K = \frac{m_1 - m_2}{S \cdot \tau},$$

где *m*₁ – масса образца до испытания, г; *m*₂ – масса образца после испытания, г; S – площадь поверхности образца, м²; τ – время испытания, ч.

Глубинный показатель коррозии П (мм/год) рассчитывали по формуле

$$\Pi = (K \cdot 8, 76) / \rho,$$

где 8,76 – коэффициент пересчета времени; ρ – плотность металла, г/см³.

При повышении температуры рабочих сред погрешность оценки величины *К* повышалась, но оставалась не хуже 10 %.

Поляризационные измерения проводили с помощью потенциостата ПИ-50-1 в соответствии с ГОСТ 9.506-87 в условиях естественной аэрации растворов. При снятии поляризационных кривых температуру раствора поддерживали с помощью магнитной мешалки с регулируемым подогревом, температуру контролировали ртутным термометром. Рабочие электроды цилиндрической формы были впрессованы во фторопласт. Вспомогательный электрод – платиновый, электрод сравнения – хлоридсеребряный (х.с.э.). В динамических условиях скорость набегания потока раствора на рабочий электрод составляла ~0,5 м/с. Результаты определения скорости коррозии в токовых единицах были пересчитаны на глубинный показатель коррозии.

Триботехнические испытания проводили в условиях смазки водой применительно к паре трения ступени ЭЦН (ступица направляющего аппарата (СНА) – втулка защитная вала (ВЗВ)) на экспериментальной установке с узлом трения, имитирующим работу при одностороннем нагружении.

Одностороннюю нагрузку на радиальную пару задавали сменным грузиком, масса которого изменялась при испытаниях в водной среде от 30 до 200 Н. Частота вращения вала составляла ~3000 об/мин, время испытаний при каждой нагрузке - 60 минут, расход воды -7 л/ч. Скорость изнашивания определяли путем замера массы ВЗВ в процессе трения. В процессе испытаний фиксировали изменение момента на валу двигателя. Исходя из полученных значений рассчитывали коэффициент трения в разные периоды времени.

Результаты. Химический состав чу-

гуна марки ЧН12Д2Г5ХМ отличается от чугуна ЧН16Д7ГХ частичной заменой дорогостоящих никеля и меди марганцем (табл. 1).

Металлографическим анализом установлено, что структура металлической основы чугуна марки ЧН12Д2Г5ХМ представлена аустенитом, форма графитовых включений шаровидная, неправильная и компактная (ШГф4 и ШГф3), распределение равномерное (ШГр1), количество включений цементита соответствует Ц4 (рис. 1).

Отливки из чугуна ЧН16Д7ГХ имеют включения графита пластинчатой прямо-

линейной формы (ПГф1) длиной от 30 до 250 мкм (ПГд45-ПГд180), распределение соответствует равномерному и колониям пластинчатого графита (ПГр1-ПГр3). Металлическая основа представлена аустенитом, количество цементита составляет в среднем Ц10 (рис. 2).

Характеристики структуры чугунов ЧН12Д2Г5ХМ и ЧН16Д7ГХ приведены в табл. 2. Механические свойства исследуемых чугунов приведены в табл. 3.

Установлено, что чугун ЧН12Д2Г5ХМ отличается более высокими прочностными характеристиками (в ~3 раза) и наличием пластичности.

Таблица 1

лимический состав чугуна										
Марка чугуна	Содержание элементов, %									
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	
ЧН12Д2Г5ХМ	2,6–3,2	4,0–5,6	2,0–2,8	до 0,025	до 0,045	0,8–1,2	11,0–13,0	0,3–0,6	1,8–2,3	
ЧН16Д7ГХ	2,6-3,0	0,85–1,5	1,2–1,9	до 0,03	до 0,25	0,7–3,0	14,0–17,0	-	5,0-8,0	

V.....

а

б

Рис. 1. Структура чугуна ЧН12Д2Г5ХМ: а – не травлено, б – травлено

Рис. 2. Структура чугуна ЧН16Д7ГХ: а – не травлено, б – травлено

Таблица 2

	Марка		Цементит			
чугуна		форма	диаметр/длина	распределение	кол-во	содержание
	ЧН12Д2Г5ХМ	ШГф3, ШГф4	ШГд25 — ШГд45	ШГр2, ШГр3	ШГ6	Ц4
	ЧН16Д7ГХ	ΠΓΦ1	ПГд45 – ПГд180	ПГр1, ПГр3	ПГ6	Ц10

Характеристики структуры чугунных отливок

T (1
Ταρπιμα	1
1 aosiniqu	

			we oboviorbu tyty			
Марка чугуна	Твердость, НВ5/750	σ _τ , κг/мм²	σ _в , кг/мм²	δ, %	ψ, %	
ЧН12Д2Г5ХМ	141,0–159,0	31,0–32,0	47,5–48,0	11,5–12,5	24,0–26,0	
ЧН16Д7ГХ	121,5–126,5	_	10,6–14,0	_	-	

Механические свойства чугунов

Результаты коррозионных испытаний, проведенных гравиметрическим методом, приведены в табл. 4.

Установлено, что глубинный показатель коррозии исследуемых чугунов в сероводородсодержащей среде одинаков, глубинный показатель коррозии чугуна ЧН12Д2Г5ХМ в солянокислом растворе и в модели пластовой воды примерно в 1,5 раза выше, чем чугуна ЧН16Д7ГХ. При этом в соответствии с десятибалльной шкалой коррозионной стойкости металлов [ГОСТ 9.502-82] исследуемые чугуны при одинаковых условиях испытаний имеют практически одинаковый балл коррозионной стойкости, который не зависит от химического состава, а определяется условиями испытаний и составом среды. Так, в солянокислом электролите при температуре 20 °С, независимо от того, перемешивали рабочий раствор или нет, испытуемые чугуны имеют балл коррозионной стойкости, равный 6, и относятся к группе «пониженно-стойких». Повышение температуры ис-

пытаний до 80 °С приводит к снижению балла коррозионной стойкости до 9–10, что означает переход чугунов в группу «слабоустойчивых». В сероводородсодержащей среде балл коррозионной стойкости чугунов обеих марок равен 4 (группа материалов, «устойчивых к воздействию агрессивных сред»). Испытания в модели пластовой воды показали, что при 20 °С в неперемешиваемом растворе исследуемые чугуны имеют 3-й балл коррозионной стойкости и относятся к группе «устойчивых» материалов, перемешивание раствора во время испытаний сопровождается снижением балла коррозионной стойкости чугунов до 4-го. При 80 °С как в статических, так и в динамических условиях балл коррозионной стойкости чугунов - 6, группа «пониженно-стойкие».

Некоторые из полученных поляризационных кривых исследуемых чугунов в нейтральной среде приведены на рис. 3 и 4.

Установлено, что процесс коррозии протекает со смешанным диффузионно-

Таблица 4

	Глубинный показатель коррозии, мм/год (балл стойкости)										
Марка чугуна		Водный 5 % NaCl	раствор + 3 % НСІ		5 % NaCl+ +0.5 % CH ₃ COOH+ +2200 мл H ₂ S (ASTM 01-77)	МПВ № 2 по ГОСТ 9.506-87			6-87		
	статические динам			ические статические		статические динамические					
	условия условия			овия	условия	условия усл			ЭВИЯ		
	20 °C	80 °C	20 °C	80 °C	20 °C	20 °C	°C 80	20 °C	°C 80		
ЧН12Д2Г5ХМ	0,186	6,77	0,275	11,30	0,037	0,0062	0,149	0,012	0,211		
	(6)	(9)	(6)	(10)	(4)	(3)	(6)	(4)	(6)		
ЧН16Д7ГХ	0,133 (6)	4,607 (8)	0,181– 0,278 (6)	6,033– 8,446 (9)	0,036 (4)	0,008 (3)	0,109 (6)	0,012 (4)	0,145 (6)		

Глубинный показатель коррозии чугунов, определенный гравиметрическим методом

Рис. 3. Катодные (1, 2) и анодные (1', 2') поляризационные кривые для ЧН12Д2Г5ХМ (1, 1') и ЧН16Д7ГХ (2, 2') в 3 % NaCl при 20 °C в статических условиях

кинетическим контролем. При переходе от статического режима к динамическому в нейтральном растворе наблюдается увеличение катодных токов и уменьшение анодных токов (см. рис. 4). Снижение анодных токов при перемешивании раствора, более заметное для ЧН16Д7ГХ, можно объяснить протеканием процессов частичной пассивации в области потенциалов активного растворения металла [Михеева Ф.М., Флорианович Г.М. // Защита металлов, 1987. – Т. 23. – № 1. – С. 33–40] за счет увеличения поверхностной концентрации ионов ОН[–] при усиленном подводе кислорода к поверхности металла.

Значения глубинных показателей коррозии исследованных чугунов, полученные на основании электрохимических измерений, приведены в табл. 5, анализ данных позволил установить, что большей коррозионной стойкостью в нейтральных растворах обладает чугун ЧН16Д7ГХ. Сравнение результатов для МПВ № 2 (см. табл. 4) и МПВ № 2 с добавкой 20 мг/л H₂S (см. табл. 5) показывает, что введение сероводорода в электролит снижает коррозионную стойкость обоих чугунов, стойкости при этом балл нирезиста ЧН16Д7ГХ выше. чем нирезиста ЧН12Д2Г5ХМ.

Для оценки износостойкости и склонности к схватыванию были проведены триботехнические испытания в условиях водной смазки. Выбор среды объясняется

Рис. 4. Катодные (1–4) и анодные (1'–4') поляризационные кривые для ЧН12Д2Г5ХМ (1, 2, 1', 2') и ЧН16Д7ГХ (3, 4, 3', 4') в 3 % NaCl при 80 °C в статических (1, 3, 1', 3') и динамических (2, 4, 2', 4') условиях

высоким содержанием воды в пластовых жидкостях (до 99 %), а также откачкой жидкости глушения в начальный период работы насоса.

Значения коэффициента трения в разные периоды работы и величина скорости изнашивания *V* при всех испытанных нагрузках трибосопряжения втулка защитная вала (ВЗВ) – ступица направляющего аппарата (СНА) в воде приведены на рис. 5, 6 и в табл. 6.

Рис. 5. Зависимость скорости изнашивания от величины нагрузки для чугунов ЧН12Д2Г5ХМ и ЧН16Д7Г

Рис. 6. Зависимость коэффициента трения от времени при различных нагрузках для чугунов ЧН12Д2Г5ХМ и ЧН16Д7ГХ

Таблица б

		Коэффи	циент т	Скорость	
Материал пары трения ВЗВ – СНА	N, H	0 мин	30 мин	60 мин	изнашивания, мг/ч
	30	0,72	0,61	0,51	5,2
	50	0,81	0,58	0,56	19,2
	80	0,49	0,51	0,48	31,8
чугун чгтедегэли	100	0,51	0,36	0,41	42,4
	130	0,56	0,42	0,43	97,2
	160	0,57	0,41	0,39	91,7
	30	0,54	0,44	0,39	6
	50	0,37	0,27	0,29	7
	80	0,25	0,22	0,20	24
чугун чттод/т л	100	0,33	0,55	0,53	165
	130	0,22	0,54	0,52	492
	160	0,23	0,57	0,53	763

Влияние односторонней нагрузки на скорость изнашивания и средний конечный коэффициент трения в водной среде

Установлено, что коэффициент трения пары. изготовленной чугуна из ЧН12Д2Г5ХМ с включениями графита шаровидной формы, при нагрузках 30-80 Н и в начальный период времени в интервале нагрузок 100-160 Н всегда выше, чем чугуна ЧН16Д7ГХ с пластинчатым графитом, при этом скорость изнашивания пар трения как ИЗ чугуна марки ЧН12Д2Г5ХМ, так и ЧН16Д7ГХ при малых нагрузках (30-80 Н) практически одинакова. С повышением нагрузки скорость изнашивания чугуна с пластинчатым графитом резко возрастает, что сопровождается увеличением коэффициента трения в дальнейший период испытаний.

Вероятнее всего, что более низкие триботехнические характеристики чугуна с шаровидным графитом, по сравнению с

обусловлены пластинчатым, структурным состоянием материалов, а именно морфологией графитовых включений: несмотря на равную площадь, занятую графитовыми включениями (5-8 % по ГОСТ 3443-87), площадь контакта аустенитной основы сопряженных поверхностей пары трения с шаровидным графитом, которая склонна к адгезионному схватыванию, в чугуне ЧН12Д2Г5ХМ существенно больше, чем в ЧН16Д7ГХ. Также можно предположить, что шаровидный графит не обеспечивает формирование на трущихся поверхностях графитовой пленки, предотвращающей схватывание поверхностей, а возрастание скорости изнашивания и коэффициента трения пары из чугуна ЧН16Д7ГХ в интервале нагрузок 100-160 Н объясняется разрушением приповерхностных слоев материала пары за счет его меньших прочностных свойств (предел прочности при растяжении чугуна ЧН16Д7ГХШ в три раза ниже, чем чугуна ЧН12Д2Г5ХМШ) и попаданием в зазор фрагментов материала.

Следует отметить, что высокие значения коэффициента трения пары СНА-ВЗВ из чугуна ЧН12Д2Г5ХМ при значительных удельных нагрузках, вероятных при запуске насоса, будут способствовать схватыванию контактирующих поверхностей.

Состояние поверхностей втулок защитных вала пар трения из чугуна марки ЧН12Д2Г5ХМ и чугуна ЧН16Д7ГХ после триботехнических испытаний при нагрузке 50 Н приведено на рис. 7, структурное состояние приповерхностной зоны ступиц направляющего аппарата из чугунов марки ЧН12Д2Г5ХМ и ЧН16Д7ГХ показано на рис. 8.

Таким образом, на основании прове-

денных исследований установлено, что ввиду более низких коррозионных и антифрикционных свойств пары трения из чугуна с шаровидным графитом (ЧН12Д2Г5ХМ) предпочтительнее изготавливать ступени из чугуна ЧН16Д7ГХ с пластинчатым графитом.

Выводы:

Скорость 1. коррозии чугуна ЧН12Д2Г5ХМ растворах В 5 % NaCl + 3 % HCl, 3 % NaCl и в модели пластовой воды в ~1,5 раза выше, в модели пластовой воды с добавкой сероводорода в ~2–10 раз, чем чугуна ЧН16Д7ГХ, в сероводородсодержащей воде скорость коррозии исследуемых чугунов одинакова. Большую коррозионную стойкость чугуна ЧН16Д7ГХ в перемешиваемых нейтральных растворах можно объяснить протеканием процессов частичной пассивации в области потенциалов активного растворения металла.

Рис. 7. Состояние поверхностей втулок защитных вала пар трения после испытаний при 50 H в водной среде: а – из чугуна ЧН12Д2Г5ХМ, б – из чугуна ЧН16Д7ГХ

Рис. 8. Микроструктура приповерхностной зоны ступиц пары трения, не травлено: а – нагрузка 30 H, чугун ЧН12Д2Г5ХМ; б – нагрузка 30 H, чугун ЧН16Д7ГХ; в – нагрузка 100 H, чугун ЧН12Д2Г5ХМ; г – нагрузка 100 H, чугун ЧН16Д7ГХ

2. Коэффициент трения пар трения из чугуна ЧН12Д2Г5ХМ в начальный момент времени во всем диапазоне нагрузок выше, чем пар трения из чугуна ЧН16Д7ГХ, за счет большей площади контакта аустенитной основы, склонной к схватыванию, что будет способствовать схватыванию контактирующих поверхностей при значительных удельных нагрузках, вероятных при запуске насоса.

3. Использование чугуна «нирезист» ЧН12Д2Г5ХМ с шаровидным графитом для изготовления ступеней погружных центробежных насосов для добычи нефти нежелательно ввиду низких антифрикционных и коррозионных свойств.