TEXHODININDHISIE METAJIJISI B JUEINOHIMIPYKOUUIMX CIPEJIAX HIA TEPPIMITOIPIMINI IC. IIIIEIPMINI

А.К. Лаптева, кандидат географических наук, старший инженер, Институт экологии и генетики микроорганизмов УрО РАН

М.А. Шишкин, кандидат геолого- минералогических наук, руководитель группы физико-химических исследований, Институт экологии и генетики микроорганизмов УрО РАН

По результатам эколого-геохимического картирования снежного покрова, почв и лихеноиндикации эпифитного лишайника *Hypogymnia physodes (L.) Nyl.* выявлены особенности пространственного распределения некоторых технофильных металлов на территории г. Перми.

Программы экологического мониторинга в последние годы выполняются во многих крупных промышленных городах России [17, 24, 27 и др.]. В г. Перми проводятся только постоянные наблюдения за состоянием атмосферного воздуха и вод на сети постов Пермского центра по гидрометеорологии и мониторингу окружающей среды. Эколого-геохимические обследования снежного покрова, почв и растительности выполняются лишь эпизодически [3, 4, 9, 10, 11, 25 и др.]. Между тем г. Пермь - индустриальный центр Приуралья с многоотраслевой промышленностью, где особенности пространственного распределения аэрогенных загрязнений определяются сложным рельефом, вкраплением промзон в жилую застройку, большой протяженностью города вдоль реки.

В настоящей работе обобщены материалы снегогеохимической (2005 г.) и почвенной (2006 г.) съемок, а также результаты биоиндикации (2008 г.) технофильных металлов с позиций экологогеохимической концепции [26].

Снежный покров в силу ряда свойств

- очень показательный индикатор загрязнения не только атмосферных осадков, но и атмосферного воздуха. Это своеобразный «планшет», на котором отражаются особенности пространственного распределения загрязняющих веществ за зимний период. Обследование снежного покрова в городе выполнено по случайно-упорядоченной сети [21] с преимущественным расположением пробных площадок в парках, скверах, на территории учреждений образования и здравоохранения, в спальных микрорайонах, дачных массивах; на удалении не менее чем на 200 м от напряженных автомагистралей. Контрольные пробы взяты на открытой и залесенной местности у д. Ольховка (около 40 км юго-западнее города). Отбор образцов снежного покрова осуществлен по общепринятой методике [5], пробоподготовка подробно рассмотрена в [25]. Фазовый анализ металлов, обычно присутствующих в приземном воздухе промышленных центров (Hg, Cd, Pb, Cu и Zn), выполатомно-абсорбционной методом спектрометрии (спектрофотометр «Спектр-5») в Центре агрохимической службы «Пермский».

Среди форм металлов, связанных с минеральными и органо-минеральными носителями, в снежном покрове повсеместно выявлены технофильные металлы с преобладанием по соотношению «город/контроль» Hg, Cu, Cd (табл. 1). При этом накопление Hg отмечено на 96 %

[26]. На территории г. Перми доля водорастворимых форм в общем содержании металлов в снежном покрове в среднем не выше 10 % для Cd, 7 % — для Pb, 3 % — для Zn и менее 1 % — для Cu и Hg [25].

Установлены существенные различия в расположении полиэлементных аномалий для минеральной составляющей

Таблица 1 Содержание тяжелых металлов (С, мг/кг) в твердофазных выпадениях из атмосферы и характеристика их накопления в снежном покрове

и характеристика их накопления в снежном покрове								
Показатель	Статистики	Pb	Cu	Zn	Cd	Hg		
	Город (n=79)							
	Встречаемость, %	100	100	100	100	100		
	Минимум	0,07	0,04	1,52	0,005	0,0018		
	Максимум	5,96	51,1	22,4	0,15	0,094		
С	Среднее	1,33	4,74	6,62	0,04	0,015		
	Стандарт	1,08	7,32	3,85	0,02	0,016		
	Медиана	1,05	2,96	5,6	0,04	0,01		
	Контроль (объединенная проба из 2 отборов)							
	Среднее	1,32	2,45	8,77	0,03	0,0023		
Коэффициент	Минимум	0,06	0,02	0,17	0,16	0,79		
накопления (<i>K</i> _c)	Максимум	4,5	20,8	2,6	5,0	40,7		
	Среднее	1,0	1,9	0,8	1,5	6,5		
Среднее отношение «город/контроль»		1,0	1,9	0,8	1,7	6,5		
Количество площадок с <i>К</i> _с >1		30	49	18	57	73		
Количество площадок с Кс выше среднего по городу		30	20	28	37	26		

Примечание. При составлении этой таблицы данные по содержанию Hg на площадках: 1. микрорайон Голованово, сквер в 120 м с.-в. дома № 22 по ул. Бумажников (7,6 мг/кг); 2. микрорайон Архиерейка, пустырь у садовых участков (0,22 мг/кг); 3. Черняевский лес, 250 м с.-з. краевой детской клинической больницы (0,63 мг/кг) исключены как «ураганные».

площадок, Cu – на 62 %, Cd – на 73 %. Средние содержания Pb и Zn близки к контролю.

Суммарный показатель загрязнения Z_c минерального осадка снежного покрова металлами составил 1–41 при среднем 8; его максимум выявлен в Кировском районе (лес в 600 м западнее дома № 74 по ул. Калинина). Особенности пространственного распределения этого показателя можно видеть на рис. 1. Значения Z_c выше среднего по городу отмечены на 26 площадках в Кировском, Дзержинском, Ленинском и Мотовилихинском районах.

Минеральные формы металлов могут составлять 70–80 % от общего баланса элементов в пробах снега, но знания только их количеств недостаточно для целей индикации. Например, известны контрастные техногенные аномалии растворенного никеля при низких его концентрациях в минеральной составляющей снега

снежного покрова и фильтрата (см. рис. 1, 2). Как видно из рис. 2, из 22 площадок с относительно повышенными значениями Z_c более половины расположены в правобережной части города.

С талыми водами металлы выносятся в поверхностные водотоки, попадают в почвы и грунтовые воды. При нормировании содержаний металлов в фильтрате относительно значений предельно допустимых концентраций для вод водоемов, используемых в рыбохозяйственных целях (ПДК_{вр}.)[18], обнаружено повсеместное превышение водорастворимых Си, Zn, Рb и Hg; а по Cd — только на 19 площадках. По сравнению с контролем содержания металлов в фильтрате повышены в гораздо меньшем числе проб (табл. 2).

Антропогенный вклад Hg, Zn, Sn, Cd, Cu, As и Sb в их общем количестве в атмосфере уже составил более 50 %, и пыль аэрогенных выпадений обогащена этими

Рис. 1. Распределение суммарного показателя загрязнения (Z_c) минерального осадка снежного покрова кислоторастворимыми формами Cu, Zn, Pb, Cd, Hg. Условные обозначения: значения Z_c на площадках

□ 1.0 - 8.0 ниже среднего по городу \star 8.1 - 40.7 выше среднего по городу

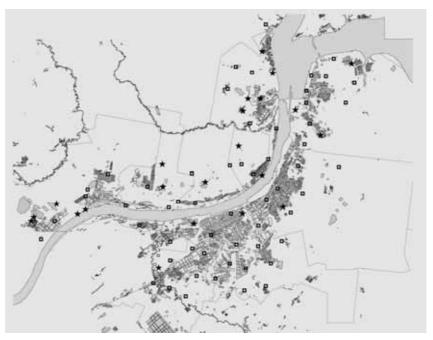


Рис. 2. Распределение суммарного показателя загрязнения (Z_c) фильтрата талой воды Си, Zn, Pb, Cd, Hg. Условные обозначения: значения Z_c на площадках

1,0 − 1,96 ниже среднего по городу
 ★ 1,961 − 9,96 выше среднего по городу

металлами в 5–20 раз по сравнению с почвой. Атмосферные выпадения над промышленными городами содержат в среднем еще в 3–15 раз больше металлов относительно регионального фона [26].

Однако формирующиеся за 5–10 лет ореолы техногенных загрязнений в почве более постоянны, чем в снежном покрове и педогеохимическая индикация считается репрезентативной, несмотря на многооб-

Таблица 2

Содержание металлов в фильтрате талой воды (мг/дм3) и их относительные характеристики

Показатель	Статистики	Pb	Cu	Zn	Cd	Hg			
	Город (n=79)								
	Встречаемость, %	100	100	100	100	100			
	Минимум	0,003	0,002	0,011	0,0003	0,0045			
С	Максимум	0,196	0,040	0,982	0,009	0,155			
	Среднее	0,064	0,013	0,136	0,003	0,055			
	Стандарт	0,045	0,007	0,186	0,002	0,030			
	Медиана	0,048	0,012	0,067	0,003	0,049			
	Контроль (объединенная проба из 2 отборов)								
	Среднее	0,127	0,022	0,108	0,004	0,052			
Среднее отношени	ие «город/контроль»	0,5	0,6	1,3	0,8	1,1			
Максимальное пре	Максимальное превышение контроля		1,8	9,1	2,1	3,0			
Количество площа	Количество площадок со значениями С								
выше контроля		7	8	20	26	37			
ПДК вр		0,006	0,005	0,01	0,005	0,01			
Среднее превышение ПДК вр		10,6	2,7	13,6	0,7	5,5			
Максимальное превышение ПДК вр		32,7	8,0	98,2	17,8	15,5			
Количество площадок со значениями С									
выше ПДК вр		78	79	79	19	78			

Примечание. Значения концентраций (С) и ПДК во для Нд даны в мкг/дм³.

разие трансформирующих факторов.

В Перми встречаются как урбаноземы, так и естественные почвы. В соответствии с рекомендациями [6, 15], образцы из верхних 5 см почвенного профиля отобраны по той же схеме, что и для снежного покрова. Контрольные пробы отобраны в окрестностях д. Ольховка. Почвенная съемка проведена в первой половине июня, после прекращения почти месяца ливневых дождей. Пробоподготовка выполнена по [1]. Анализ кислото- и водо-

растворимых форм Cd, Pb, Cu, Zn, Cr, Ni в почвах выполнен методом атомно-абсорбционной спектрометрии на спектрофотометре AA 6300 «SHIMADZU») [19, 20].

В кислотных вытяжках содержание металлов достигает 90–95 % от вала и характеризует подвижные формы. Их распределение в почвах города крайне неравномерно (табл. 3). Скорее всего, это обусловлено не только интенсивностью аэрогенного загрязнения, различной сте-

Таблица 3 Содержание кислоторастворимых форм металлов (мг/кг с.в.) в почвах и показатели их накопления

Показатель	Статистики	Pb	Cr	Ni	Cu	Zn		
	Город (n= 79)							
	Встречаемость, %	100	100	100	100	100	96	
	Минимум	2,1	2,1	4,0	3,2	9,6	0	
	Максимум	391	50,0	62,4	372	146	0,96	
_	Среднее	20,3	11,3	17,5	26,1	47,9	0,1	
С	Стандарт	50,1	7,6	11,2	50,5	33,9	0,1	
	Медиана	8,3	9,1	14,4	13,8	38,1	0,1	
	Контроль (объединенная проба из 3 отборов)							
	Среднее	13,9	8,4	11,0	21,0	80,8	0,06	
	Минимум	0,15	0,24	0,37	0,15	0,12	0	
	Максимум	28,1	5,9	5,7	17,7	1,8	51,1	
K c	Среднее	1,5	1,3	1,6	1,2	0,6	5,7	
	Стандарт	3,6	0,9	1,0	2,4	0,4	8,9	
	Медиана	0,6	1,1	1,3	0,7	0,5	3,0	
Количество площадок с <i>К</i> _с >1		19	43	52	27	12	62	
Количество площадок с <i>К</i> с выше среднего по		13	28	26	12	19	24	
городу								

пенью промытости верхнего горизонта, но и генезисом почв [9]. Например, в тяжелой суглинистой, обогащенной гумусом почве около д. Ольховка Zn содержится в 3–9 раз больше, чем в песчаных почвах на аллювиальных отложениях по правому берегу р. Камы. Эта же закономерность характерна для Cu, Pb, Cd и Ni. И наоборот, глинистые и суглинистые почвы в городе содержат больше металлов, чем почвы в контрольной точке. На большей части обследованной территории значения Z_c менее 5 и только на 16 пробных площадках они выше среднего (рис. 3). Аномальные значения суммарно-

цов; в контроле водорастворимый Cd отсутствует (табл. 4). По сравнению с контролем средняя ассоциация металлов в водных вытяжках представлена рядом: Ni $_{4,1}$ > Pb $_{2,3}$ > (Cu, Cr) $_{1,4}$ > Zn $_{1,2}$. Значение Z_c изменяется от 1 до 19, при среднем – 7. Максимум Z_c — на просеке в лесу, в 1,5 км юго-западнее комплекса ПГТУ. Среднегородской уровень Z_c превышен на 31 площадке. Почвенные аномалии этих форм металлов выявлены во всех районах и включают массивы частной застройки, где люди используют продукцию со своих огородов (рис. 4). Обнаружены существенные различия аэрогенно-

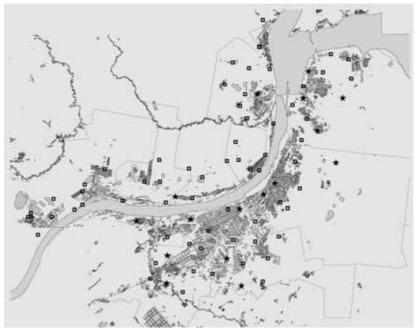


Рис. 3. Распределение суммарного показателя загрязнения (Z_c) почв кислоторастворимыми формами Z_c , C_u , C_v ,

□ 1.0 - 5.0 ниже среднего по городу 5.1 - 18.6 выше среднего по городу

го показателя загрязнения отмечены в левобережной части города в микрорайонах Левшино, КамГЭС, Мотовилихинском, Свердловском и Ленинском районах. Следует отметить, что полиэлементные аномалии в снежном покрове и почвах территориально практически совпадают (см. рис. 1 и 3).

Водорастворимая форма металлов наиболее опасна и «агрессивна», так как легко включается в пищевые цепи. В водных вытяжках из почв чаще присутствуют Сu, Zn, Pb, Cr, Ni, a Cd обнаружен лишь в половине исследованных образ-

го загрязнения снежного покрова и почв (см. рис. 2, 4).

Для оценки загрязнения приземного воздуха используются также и методы лихеноиндикации [2, 11, 13, 22 и др.]. Симбиотическая природа, большая абсорбционная поверхность, среда обитания и длительность жизни (возраст немногим меньше возраста деревьев, на которых растут) определяют чувствительность этих организмов к загрязнениям. Лихеноиндикация позволяет выявить устойчивые многолетние (50–70 лет) аномалии. Во многих сообщениях отмечено

Таблица 4

Содержание водорастворимых форм металлов (мг/кг) в почвах
и показатели их накопления

Показатель	Статистики	Pb	Cr	Ni	Cu	Zn			
	Город (n= 79)								
	Встречаемость, %	85	99	97	100	100	51		
	Минимум	0	0	0	0,15	0,10	0		
	Максимум	0,80	0,17	0,37	2,15	2,80	0,02		
C	Среднее	0,25	0,07	0,14	0,60	0,37	0,004		
	Стандарт	0,21	0,04	0,09	0,27	0,45	0,005		
	Медиана	0,25	0,06	0,14	0,53	0,27	0,001		
	Контроль (объединенная проба из 3 отборов)								
	Среднее	0,11	0,05	0,035	0,42	0,31	0		
Kc	Минимум	0	0	0	0,4	0,3	-		
	Максимум	7,4	3,2	10,4	5,1	9,3	-		
	Среднее	2,3	1,3	4,1	1,4	1,2	-		
	Стандарт	1,9	0,8	2,5	0,6	1,5	-		
	Медиана	2,3	1,2	4,0	1,3	0,9	-		
Количество площадок с <i>К</i> _с >1		54	42	72	59	31	-		
Количество площадок с <i>К</i> с выше среднего		29	34	34	31	23	-		
по городу									

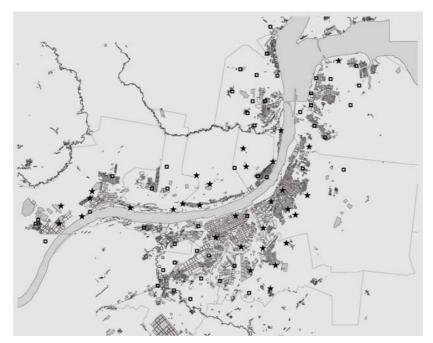


Рис. 4. Распределение суммарного показателя загрязнения (Z_c) почв водорастворимыми формами Z_n , Cu, Pb, Cr, Ni. Условные обозначения: значения Z_c на площадках

□ 1,0-7,0 ниже среднего по городу ★ 7,1-18,6 выше среднего по городу

практическое отсутствие лишайников в промышленных районах. Однако в Перми самый распространенный лесной эпифитный лишайник гипогимния вздутая (Hypogymnia physodes (L.) Nyl.) семейства пармелиевых [14] встречен повсеместно на хвойных и лиственных породах, деревянных заборах, иногда в сообществе с эпифитными мхами, лишайниками Parmelia sulcata и Lecanora (Ach.) Th. Fr.

При сборе образцов эпифитного ли-

шайника придерживались в основном рекомендаций [23], площадь обследования изменялась от нескольких сотен квадратных метров до 1 км², точка отбора отнесена к геометрическому центру площади (55 точек). Большинство образцов представляют собой объединенные пробы с разных древесных пород и деревянных заборов. Определение металлов (Zn, Cu, Cr, Pb, Ni, Cd) выполнено по методике [16] на спектрофотометре AA 6300

«SHIMADZU».

Статистические параметры распределения металлов в *Hypogymnia physodes* на территории города приведены в табл. 5. Отметим, что средние валовые содержа-

ниях. Так, относительно среднего содержания в сухой фитомассе растительности континентов указанная ассоциация металлов в порядке убывания коэффициентов концентрации представлена совсем

Таблица 5 Содержание металлов (мг/кг с.м.) в лишайнике Hypogymnia physodes (L.) Nyl. и показатели их накопления

Показатель	Статистики	Pb	Cr	Ni	Cu	Zn	Cd		
	Город (n= 55)								
	Встречаемость, %	100	100	100	100	100	100		
	Минимум	4,4	1,5	2,6	5,6	60	0,13		
	Максимум	39,6	96,1	102	113	326	1,7		
	Среднее	17,4	16,1	21,1	23,4	153	0,8		
	Стандарт	7,7	16,0	18,2	17,0	54,9	0,4		
С	Медиана	17,1	11,6	17,2	19,3	150	0,7		
	Контроль (n=10)								
	Встречаемость, %	100	100	100	100	100	100		
	Минимум	1,8	1,2	1,0	3,5	49,4	0,3		
	Максимум	13,2	4,9	4,1	8,2	106	0,6		
	Среднее	6,3	2,4	1,9	5,6	68,7	0,4		
	Стандарт	3,9	1,1	1,1	1,4	14,8	0,1		
	Медиана	6,2	2,1	1,5	5,3	66,8	0,4		
	Минимум	0,7	0,6	1,3	1,0	0,9	0,3		
	Максимум	6,3	40,0	53,2	20,2	4,8	4,2		
<i>K</i> _c 1	Среднее	2,8	6,7	11,0	4,2	2,2	1,9		
	Стандарт	1,2	6,7	9,5	3,0	0,8	1,0		
	Медиана	2,7	4,8	9,0	3,4	2,2	1,6		
K₀2	Минимум	1,8	0,8	1,3	0,6	1,2	26,0		
	Максимум	15,8	53,4	51,1	11,3	6,5	338		
	Среднее	7,0	8,9	10,6	2,3	3,1	150		
	Стандарт	3,1	8,9	9,1	1,7	1,1	80		
	Медиана	6,8	6,4	8,6	1,9	3,0	132		

Примечание. K_c1 – относительно среднего содержания металлов в контроле, K_c2 – относительно среднего содержания в сухой фитомассе растительности континентов [7].

ния Cu, Pb, Cr и Ni в лишайнике близки к почвенным (см. табл. 3), а средние содержания Zn и Cd выше в 3–5 раз соответственно. Вероятно, это связано с избирательным накоплением лишайниками этих металлов [12].

В лишайнике у д. Ольховка содержания металлов оказались такими же, как и в городе. Поэтому в качестве контрольных образцов взяты пробы около с. Коса на северо-западе Пермского края (7 точек) и в деревнях Мысы и Ананичи Краснокамского района (3 точки). В ассоциации металлов, накапливающихся в *Hypogymnia physodes* на территории Перми, лидирует Ni, затем следуют Cr, Cu, Pb, Zn и Cd. Данные табл. 5 хорошо иллюстрируют важность выбора системы сравнения при геоэкологических обобще-

другим рядом: Cd>Ni>Cr>Pb>Zn>Cu.

Характер распределения Z_c относительно контроля приведен на рис. 5. Среднегородской уровень суммарного загрязнения превышен на 22 площадках. Максимум ($Z_c = 103,1$) — в сквере напротив ОАО «Пермские моторы». Обширная зона повышенных значений Z_c охватывает центральную часть города (Ленинский, Дзержинский районы, частично Свердловский). Отдельные очаги загрязнения выявлены в микрорайонах Левшино, на Гайве и в Закамске.

Геоэкологическое обследование территории г. Перми выполнено по программе НИР ИЭГМ УрО РАН «Изучение региональных особенностей распределения экологически опасных факторов» (№ госрегистрации 01.9.70.005275), а изучение

содержаний металлов в *Hypogymnia* physodes – по инициативе одного из авторов. В дальнейшем планируется детализация работ, в частности, обследование почв и лишайника на Hg и выявление особенностей миграции Cd по почвенному профилю.

Полученные результаты даже по узкому перечню поллютантов наглядно выявили неблагополучие экологической обстановки в г. Перми. Считаем, что организация эколого-аналитического мониторинга в городе давно назрела и не должна быть делом отдельных исследователей.

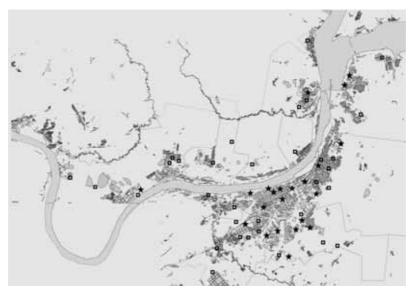


Рис. 5. Распределение суммарного показателя загрязнения (Z_c) лишайников Zn, Cu, Pb, Cr, Cd, Ni. Условные обозначения: значения Z_c на площадках

★ 23,51 − 102,2 выше среднего по городу

Библиографический список

- 1. Аринушкина Е.В. Руководство по химическом у анализу почв. М.: МГУ, 1970. 487 с.
- 2. Валеева Э.И., Московченко Д.В. Микроэлементный состав лишайников как индикатор загрязнения атмосферы на севере Западной Сибири // Исследования эколого-географических проблем природопользования для обеспечения территориальной организации и устойчивости развития нефтегазовых регионов России: теория, методы и практика. Нижневартовск: НГПИ, ХМРО РАЕН, ИОА СО РАН, 2000. С. 128–130.
- 3. *Ворончихина Е.А., Запоров А.Ю*. Миграционная активность тяжелых металлов в урбанизированных экосистемах // Перспективы развития естественных наук на Западном Урале: тр. Междунар. науч. конф. Т. II. Экология. Пермь: Перм. ун-т, 1996. С. 55-57.
- 4. *Ворончихина Е.А., Запоров А.Ю.* Экологическая обусловленность фитопатогенных процессов на урбанизированных территориях // Региональные и муниципальные проблемы природопользования. Киров, 1996. С. 23–25.
- 5. Временные методические указания для производства отбора и обработки проб снежного покрова в городах и их окрестностях на комплекс загрязняющих веществ. М.: Государственный комитет по гидрометеорологии, ГХИ, 1985. 14 с.
- 6. ГОСТ 17.4.3.01 83(СТ СЭВ 3847-82). Охрана природы. Почвы. Общие требования к отбору проб.
- 7. Добровольский В.В. География микроэлементов: глобальное рассеяние. М.: Мысль, 1983. 273 с.
- 8. *Еремченко О.З., Усламина Н.Г., Москвина Н.В.* Роль почвоведения в решении экологических проблем города // Перспективы развития естественных наук в высшей школе. Т. III. Экология. Предпринимательство в научно-технической сфере: тр. Междунар. науч. конф. Пермь, 2001. С. 42–45.
- 9. *Зайцева Н.В., Май И.В., Шур.П.З.* Научно-методические и прикладные аспекты экологии человека. М.: Мед. кн., 2004. 783 с.
- 10. Запоров А.Ю., Жекин А.В. Снежный покров как индикатор возможного загрязнения атмосферы зеленой зоны Пермско-Краснокамского ГПА // Перспективы развития естественных наук в высшей

- школе: тр. Междунар. конф. Т. III. Экология. Предпринимательство в научно-технической сфере. Пермь: Перм. ун-т, 2001. С. 3–5.
- 11. *Золотарева В.Н.*, *Скрипниченко И.И.*, *Мартин Ю.Л*. Лишайники индикаторы загрязнения среды тяжелыми металлами // Природа. 1981. № 1. С. 86–88.
- 12. Кабата-Пендиас А., Пендиас Х. Микроэлементы в почвах и растениях. М.: Мир, 1989. 439 с.
- 13. *Кравченко М.В., Боголюбов А.С.* Изучение флоры и экологии лишайников (методика описаний лишайниковых сообществ) / Источник: www. ecosystema.ru.
- 14. Лесная энциклопедия в 2 т. / гл. ред. Г.И. Воробьев, ред. колл.: Анучин Н.А., Атрохин В.Г., Виноградов В.Н. и др. М.: Советская энциклопедия, 1985. 563 с.
- 15. Методические рекомендации по геохимической оценке загрязнения территорий городов химическими элементами / сост.: Б.А. Ревич, Ю.Е. Сает, Р.С. Смирнова, Е.П. Сорокина. М.; ИМГРЭ, 1982. 111 с.
- 16. Методические указания по определению тяжелых металлов в почвах сельхозугодий и продукции растениеводства. Изд. 2-е, перераб. и доп. М.: М-во сельского хозяйства, ЦИНАО, 1992. 62 с.
- 17. Панин Н.Н. Ландшафтно-геохимическое обоснование природоохранных работ (на примере городов горно-промышленного Урала): автореф. дис... д-ра геогр. наук. Екатеринбург, 1998. 50 с.
- 18. Правила охраны поверхностных вод от загрязнения сточными водами. Утверждены Министерством мелиорации и водного хозяйства СССР, главным государственным санитарным врачом СССР, Министерством рыбного хозяйства СССР 16.05.74 / М-во мелиорации и водного хозяйства СССР, М-во здравоохранения СССР, М-во рыбного хозяйства СССР. М., 1975. 38 с., Дополнения 1975—1983 гг.
- 19. РД 52.18.191-89. Методика выполнения измерений массовой доли кислоторастворимых форм металлов (меди, свинца, цинка, никеля, кадмия) в пробах почвы атомно-абсорбционным анализом: метод. указания. М.: Гос. комитет СССР по гидрометеорологии, 1990. 32 с.
- 20. РД 52.18.286-91. Методика выполнения измерений массовой доли водорастворимых форм металлов (меди, свинца, цинка, никеля, кобальта, хрома, марганца) в пробах почвы атомно-абсорбционным анализом: метод. указания М.: Гос. комитет СССР по гидрометеорологии, 1991. 35 с.
- 21. *Сионова Н.А., Криворотов С.Б.* Использование эпифитных лишайников как биоиндикаторов загрязнения атмосферного воздуха урбоэкосистемы г. Краснодара // Изв. высш. уч. заведений. Северо-Кавказский регион. Сер.: Естественные науки. − 2007. − № 1. − С. 83–85.
- 22. Сборник нормативных актов. Вып. 2. Охрана почв и земель (Прил. 8) / под общ. ред. *Н.Г. Рыбальского.* М.: РЭФИА, 1996. 241 с.
- 23. Солдатенкова Ю.П. Малый практикум по ботанике. Лишайники. М.: изд-во МГУ, 1977. 128 с.
- 24. Тяжелые металлы в почвах урбанизированных территорий // Экология и промышленность России, 2001 / [Балашова С.П., Самонов В.Н., Еремин В.Н. и др.] С. 40–43.
- 25. *Шишкин М.А., Лаптева А.К.* Эколого-геохимический анализ современных ландшафтов Прикамья. Екатеринбург, 2009. 286 с.
- 26. Экогеохимия городских ландшафтов / под ред. Н.С. Касимова. М.: МГУ, 1995. 336 с.
- 27. Эколого-геохимическая оценка городов различных регионов страны / под ред. Э.К. *Буренкова*, *Н.Ф. Челищева*. М.: ИМГРЭ, 1991. –124 с.