ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК НАПРАВЛЕННОСТИ ТОЧЕЧНЫХ ИСТОЧНИКОВ КОЛЕБАНИЙ С ПОМОЩЬЮ ПОЛНОВОЛНОВОГО МОДЕЛИРОВАНИЯ

А.Г. Ярославцев, М.В. Тарантин Горный институт УрО РАН, г. Пермь

Аннотация: На результатах полноволнового моделирования рассмотрены особенности распространения волн в горных породах получены характеристики направленности упругих волн при возбуждении в некоторых типах пород, выявлены основные определяющие факторы, оценены относительные интенсивности продольных и поперечных волн, проведено сопоставление с реальными измерениями.

Ключевые слова: шахтная сейсморазведка, характеристики направленности, продольные волны, поперечные волны, горные выработки, полноволновое моделирование.

Основной объем шахтной сейсморазведки, применяемой в настоящее время в горных выработках при разработке различных месторождений твердых полезных ископаемых, связан с использованием волн различного типа (продольных и поперечных) [1-6]. Несмотря на очевидные плюсы использования разных типов волн, позволяющих на этапе интерпретации переходить к оценкам физико-механических свойств окружающего выработки породного массива, следует принимать во внимание сложные интерференционные процессы формирования регистрируемых в горных выработках волновых полей.

Как и при традиционной сейсморазведке, во внутренних точках среды ударными источниками на конуре выработки генерируются упругие колебания продольного и поперечного типов. Каждому из них соответствует своя характеристика направленности, определяющая область пространства распространения максимальной сейсмической энергии. Для любой целевой плоскости, пересекающей профильную линию (ось X вдоль выработки), характеристики направленности источников колебаний типа сосредоточенной силы должны быть близки к теоретическим [16, 17], рассчитанным для однородного полупространства (рис. 1).

Как показано в теоретических работах [9-13], характеристики направленности зависят только от $\gamma = V s \mathcal{N} p$ или, иначе, от коэффициента Пуассона среды. Практически во всех случаях при возбуждении колебаний на границе полупространства основная энергия генерируемых поперечных волн заключена внутри углов 30-60°. В зависимости от значений коэффициента Пуассона меняется и соотношение интенсивностей возбуждаемых продольных и поперечных волн. Также отмечается, что для осадочных пород по мере уменьшения Vs/Vp интенсивность Р-волн снижается, в то время как интенсивность S-волн сохраняется примерно на одном уровне. Однако в реальных данных этого не наблюдается [7, 8].

Кроме этого предполагается, что должна меняться и форма характеристик, так как с физических позиций особенность излучения источниками, действующими на свободной границе полупространства, состоит в том, что генерируемое волновое поле можно представить как сумму прямого излучения источника, находящегося в безграничном пространстве, и всех одновременно возникающих отраженных от свободной границы волн [14].

Эффективным инструментом для получения близких к реальным представлений об интенсивности упругих колебаний является математическое полноволновое моделирование [15]. В настоящей работе представлены результаты моделирования, выполненного в 2Д постановке в программном комплексе Tesseral Engineering (www.tesseral-geo.com). В пакете Tesseral Engineering реализовано конечно-разностное численное моделирование, которое позволяет точно имитировать все сейсмические эффекты прохождения сейсмического волнового поля для мультипараметрической, гетерогенной и геологически реалистичной глубинной модели среды. Точность моделирования ограничивается только сложностью используемого дифференциального приближения волнового уравнения и техническим совершенством применяемых схем расчета.

Рис. 1. Теоретические характеристики направленности источника типа сосредоточенной силы, приложенной к свободной поверхности, для двух отношений длины волны к диаметру поверхности источника: (a) λ/Ø = 50, (б) λ/Ø = 1,5

С целью построения распределений динамических параметров волн в различных направлениях во входной модели (рис. 2) пункты приема расположены на воображаемой окружности и удалены от точки возбуждения колебаний на расстояние 50 м. Это обеспечивает прием в так называемой дальней зоне, где удаление значительно превышает длину регистрируемой волны. Для моделирования волн в полупространстве пункт возбуждения (вертикальный монополь) располагался на границе «породный массив – воздух». Использован простой симметричный импульс с частотой 700 Гц. Размер элемента в расчетной сетке – 0.25 м. Среда описывалась тремя параметрами: скоростями *Vs* и *Vp* волн и плотностью.

Результаты моделирования скомпонованы в две угловые сейсмограммы для вертикальной и горизонтальной компонент поля (рис. 3). Волновые поля имеют классический вид для изотропного полупространства. Кроме вступлений прямых волн продольного и поперечного типа, прослеживается поверхностная волна вблизи углов 270° и 90°, близких к прямым относительно направления удара (0°), а также коническая волна, которая образуется за счет отрыва на некотором расстоянии от источника фронтов Р- и S-волн друг от друга.

Рис. 2. Схема расположения приемников и источника в изотропном безграничном пространстве (а) и на границе полупространства (б)

Рис. 3. Модельные сейсмограммы для однородного полупространства: а) Z-компонента, б) X-компонента

Для оценки полного вектора смещений и построения диаграммы направленности продольной и поперечной волн написан специальный программный модуль. Модуль принимает получаемые при моделировании волновые файлы и с учетом геометрии расстановки выводит результат в виде угловых зависимостей амплитуд сигналов. Предполагается, что волновые сигналы любой компоненты регистрируются в одно время. Поэтому положение волновых форм для вычисления амплитуд определяется временным положением середины окна на трассе и его шириной. По имеющимся ортогональным компонентам вычисляется полная амплитуда сигнала для каждого времени в пределах окна анализа. Искомым результатом является максимальное значение полного сигнала в пределах окна. Алгоритм позволяет находить сразу характеристики продольных и поперечных волн, так как положение их сигналов на трассе определяется временем, которое легко вычислить по имеющейся геометрии расстановки.

Итоговым результатом исследований являются характеристики направленности для различных моделей среды. На рисунке 4 приведены результаты расчетов для однородной среды со свойствами каменной соли.

Из полученных диаграмм видно, что в безграничном соляном массиве интенсивность Р-волн в 2.5 раза превышает интенсивность S-волн. При размещении источника на границе свободной поверхности «порода-воздух» максимум энергии поперечных волн смещается на азимут 48°, а соотношение интенсивностей уменьшается до 1.9 раза. Что, очевидно, происходит за счет распределения энергии на образование других классов волн, связанных с наличием границы раздела сред.

Аналогичные расчеты характеристик направленности источника типа сосредоточенной силы, приложенной к свободной поверхности, для различных типов пород приведены в таблице 1.

Рис. 4. Вычисленные характеристики направленности источника типа сосредоточенной силы в однородном пространстве (а) и приложенной к свободной поверхности (б)

Полученные результаты позволяют сделать следующие выводы.

Для большинства пород, в которых могут проходить горные выработки, по результатам моделирования и при реальных измерениях амплитуды S-волн в 2-3 раза превосходят амплитуды P-волн, а основная энергия поперечных волн сосредоточена между углами 40-50°.

Для осадочных пород по мере увеличения коэффициента Пуассона относительная интенсивность продольных волн падает, в то время как интенсивность поперечных может и увеличиваться, и уменьшаться.

Форма характеристик направленности для S-волн зависит от их скорости. Чем меньше скорость, тем меньше влияние волн, отраженных от свободной поверхности, и тем больше ширина основного лепестка.

Таблица 1

Свойства горных пород, принятые в модели,	
и результирующая характеристика направленност	Ч

Порода	Vs	V _P	γ	ρ	μ	θ	A _S /A _P	Характеристика направленности	
Кимберлит	2000	4000	0.50	2700	0.233	44.0	2.5		
Каменная соль	2500	4500	0.56	2200	0.277	48.0	1.9		
Ангидрит	2200	4000	0.55	2500	0.283	48.5	2.0	0 300 270 0 10 20 30 40 90	
Гипс	2500	4500	0.56	2500	0.290	48.5	2.0		
Песчаник	2300	4500	0.51	2500	0.323	46.0	2.4		
Мергель	2000	4500	0.44	2800	0.377	44.0	3.0		
Глина	1200	3000	0.40	2400	0.405	39.0	3.2	0 300 270 0 10 30 50 70 90	
Обозначения: $V_{\rm S}$ – скорость поперечной волны; $V_{\rm P}$ – скорость продольной волны; γ – отношение $V_{\rm S}$ / $V_{\rm P}$; ρ – плотность горной породы (кг/м ³); μ – коэффициент Пуассона; θ – угол между осью Z и направлением									

 ρ – плотность горной породы (кг/м³); μ – коэффициент Пуассона; θ на точку приема; $A_{\rm S}/A_{\rm P}$ – отношение максимума энергии S и P-волн

Исследование выполнено при поддержке РФФИ и Пермского края в рамках научного проекта № 20-45-596030.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Санфиров И.А., Бабкин А.И., Сальников А.П. Контроль состояния горного массива методами многоволновой шахтной сейсморазведки // Горн. вестн. – 1998. – № 6. – С. 94-99.
- 2. Вагин В.Б. Шахтные сейсмические методы изучения строения массивов соляных пород. Минск: БелНИЦ «Экология», 2010. 186 с.: ил.
- 3. Бабкин, А.И., Санфиров И.А. Практические примеры решения горнотехнических задач методами шахтной сейсмоакустики // Горный информационно-аналитический бюллетень (научно-технический журнал). 2011 № 4. С.152-159.
- 4. Санфиров И.А., Бабкин А.И., Ярославцев А.Г. О перспективах изучения поперечных волн в горных выработках соляных рудников // Горный информационно-аналитический бюллетень (научно-технический журнал). 2020. № 7. С. 45-63. DOI: 10.25018/0236-1493-2020-7-0-45-63.
- Кулагов Е.В., Хвесеня С.С., Иванов С.В., Богдан С.И. Сейсморазведка методом отраженных волн в подземных выработках Гремячинского месторождения калийных солей // Инженерная и рудная геофизика – 2023: сб. материалов 19-ой науч.-практ. конф. и выставки, 15-19 мая 2023 г. – СПб., 2023. – С.
- Царев Р.И., Пригара А.М., Жуков А.А. Возможности шахтной сейсморазведки на поперечных волнах // Инженерная и рудная геофизика 2019: 15-я юбилейная конф. и выставка, 22-26 апр. 2019. Геленджик, 2019. С.
- 7. Бабкин А.И. Изучение закономерностей формирования и распространения объемных сейсмических волн в породном массиве по данным трехкомпонентной записи в горных выработках // Горное эхо. 2020. № 4 (81). С. 57-63. DOI: 10.7242/echo.2020.4.12.
- 8. Бабкин А.И. Экспериментальное определение фактической направленности источника упругих колебаний типа сосредоточенной силы // Горное эхо. – 2021. – № 3(84). – С. 39-44. DOI: 10.7242/echo.2021.3.8.
- 9. Малиновская Л.Н. Методика построения теоретических сейсмограмм // Вопросы динамической теории распространения сейсмических волн: сб. науч. тр. Л., 1957. Т. 1. С.
- 10. Никитин В.Н. Основы инженерной сейсмики. М.: Изд-во МГУ, 1981. 176 с.: ил. С. 10, 29-30.
- 11. Огурцов К.И. Количественные исследования волновых процессов в упругом полупространстве при различных видах воздействий. Л.: Изд-во ЛГУ, 1956. С. 148-219.
- 12. Пузырев Н.Н. Методы и объекты сейсмических исследований. Введение в общую сейсмологию. Новосибирск: Изд-во СО РАН: ОИГГМ. 1997. 299 с.: ил. С. 17-18, 63-64.
- 13. Рудаков А.Г., Цымбал Т.М. О некоторых экспериментальных исследованиях динамических характеристик ударного импульсного воздействия. Л.: Изд-во ЛГУ, 1959.
- 14. Сейсморазведка: Справ. геофизика / под ред. И.И. Гурвича, В.П. Номоконова. М.: Недра, 1981 464 с.: ил. С. 9-16.
- 15. Санфиров И.А., Ярославцев А.Г., Бабкин А.И. Изучение особенностей формирования поля отраженных волн при наблюдениях в горных выработках соляных рудников на основе полноволнового моделирования // Геофизика. – 2021. – № 5. – С. 4-11.
- 16. Bretaudeau F., Leparoux D., Durand O., Abraham O. Small-scale modeling of onshore seismic experiment: A tool to validate numerical modeling and seismic imaging methods // GEOPHYSICS. 2011. V. 76, № 5. T101-T112. DOI:10.1190/geo2010-0339.1 (2011).
- Tang, X.M., Zhu Zhenya, Toksöz M.N. Radiation patterns of compressional and shear transducers at the surface of an elastic half space // Journal of the Acoustical Society of America. – 1994. – V. 95, № 1. – P. 71-76. – DOI: 10.1121/ 1.408299.