интерферометрии. I. Дифференциальная интерферометрия // Геофизические исследования. – 2021. – Т. 22, № 4. – С. 73-89. – DOI: 10.21455/gr2021.4-5.

- 4. Малинин Н.Н. Прикладная теория пластичности и ползучести. М.: Машиностроение, 1975. 400 с.
- 5. Фадеев А.Б. Метод конечных элементов в геомеханике. М.: Недра, 1987. 221 с.: ил.
- 6. Baryakh A.A., Samodelkina N.A Rheological analysis of geomechanical processes // Journal of Mining Science. 2005. V. 41, № 6. P. 522-530. DOI: 10.1007/s10913-006-0015-x.
- 7. Кузнецов Г.Н. Механические свойства горных пород. М.: Углетехиздат. 1947. 180 с.
- 8. Зенкевич О. Метод конечных элементов в технике. М.: Мир, 1975. 541 с.: ил.

УДК 622.831

DOI:10.7242/echo.2022.4.7

РАСЧЕТ СТЕПЕНИ НАГРУЖЕНИЯ МЕЖДУКАМЕРНЫХ ЦЕЛИКОВ ПРИ НЕСООСНОМ РАСПОЛОЖЕНИИ ОЧИСТНЫХ КАМЕР

И.С. Ломакин

Горный институт УрО РАН, г. Пермь

Аннотация. На основе анализа изменения напряженно-деформированного состояния междукамерных целиков методами математического моделирования выполнена оценка степени их нагружения при несоосном расположении камер. Численная реализация математического моделирования проводилась в упругой постановке для условий плоского деформированного состояния методом конечных элементов. По результатам выполненных расчетов установлено, что при несоосном расположении очистных камер методика Турнера-Шевякова дает завышенные оценки степени нагружения междукамерных целиков, поскольку не учитывает разгрузку целиков в условиях подработки.

Ключевые слова: степень нагружения, междукамерные целики, напряженно-деформированное состояние, математическое моделирование.

На Верхнекамском месторождении солей (ВКМС) добыча полезного ископаемого ведется камерной системой разработки с поддержанием налегающей толщи на ленточных междукамерных целиках (МКЦ). Расчет степени нагружения МКЦ (*C*) основан на методике Турнера-Шевякова и регламентирован в нормативной документации [1], разработанной для условий ВКМС:

$$C = \xi \gamma H_0 \frac{a+b}{bk_f \sigma_m} \le [C], \tag{1}$$

где ξ – коэффициент, учитывающий изменение нагрузки на целики вследствие влияния различных горнотехнических факторов (пригрузка от солеотвалов, опорное давление, наличие межходовых целиков и др.); γ – объемный вес пород; H_0 – максимальное значение расстояния от земной поверхности до кровли целиков; a – ширина очистных камер; b – ширина междукамерных целиков; k_f – коэффициент формы целиков; σ_m – прочность пород в массиве; C, [C] – соответственно, расчетная и допустимая степень нагружения целика.

Неизменное стремление горнодобывающих предприятий увеличить степень извлечения полезного ископаемого приводит к поиску альтернативных технологических подходов к организации системы подземной разработки. Одним из таких возможных направлений является отработка продуктивных пластов с несоосным расположением очистных камер. Целью представленных исследований являлась оценка степени нагружения междукамерных целиков на основе результатов математического моделирования изменения напряженно-деформированного состояния (НДС) камерного блока при несоосном расположении очистных камер на двух рабочих пластах.

В работе [3] на основе анализа многовариантных вычислительных экспериментов установлена взаимосвязь между степенью нагружения целиков *C*, определенной по формуле (1), и нормированной величиной интенсивности касательных напряжений $K = \sigma_i / \sigma_m$, где $\sigma_i = \sqrt{I_2(D_{\sigma})}$ – интенсивность касательных напряжений, определяемая величиной второго инварианта девиатора напряжений.

Там же показано, что $C \approx K'$, где K' – максимальная величина показателя K, достигаемая в каждом вертикальном сечении целика.

Дальнейший анализ позволил определить линейный вид взаимосвязи между нормированной величиной интенсивности касательных напряжений, определенной в центре вертикального сечения целика (K^*), и степенью его нагружения, рассчитанной по методике Турнера-Шевякова. Полученная взаимосвязь описывается выражением:

$$C = f(K^*) = 1.05 \cdot K^* - 0.1, \tag{3}$$

с коэффициентом корреляции 0.98.

Расчеты изменения НДС камерного блока выполнялись для нескольких вариантов выработанного пространства: для случаев отработки только одного продуктивного сильвинитового пласта и в случае их совместной отработки при несоосном расположении очистных камер. Для всех вариантов расчета принималось, что формирование очистных камер осуществляется комбайном одного типа. Параметры рассмотренных вариантов систем разработки представлены в таблице 1. Задача решалась в упругой постановке для условий плоского деформированного состояния методом конечных элементов [4, 5]. Начальное напряженное состояние нетронутого массива принималось гидростатическим.

Таблица 1

Пласт	Ширина камеры <i>а</i> , м	Ширина МКЦ <i>b</i> , м	Межосевое расстояние L=a+b, м	Вынимаемая мощность <i>m</i> ₀ , м	Глубина <i>Н</i> , м
Верхний	5.1	6.0	11.1	3.1	391
Нижний	5.1	6.0	11.1	5.0	398.1

Параметры системы разработки

Принципиальная схема расчета для всех вариантов вычислительных экспериментов представлена на рис. 1. В ней учтены основные особенности геологического строения подработанного массива, параметры камерной системы разработки, действие массовых сил интенсивностью γ_i (γ_i – удельный вес пород i – го элемента геологического разреза).

Результаты оценки степени нагружения междукамерных целиков, выполненные в соответствии с нормативными документами [1], представлены в таблице 2. Здесь же для сравнения приведены расчеты степени нагружения целиков, полученные методом математического моделирования с использованием соотношения (3) для условий отработки одного рабочего пласта. Как видно, отмечается хорошее согласование результатов математического моделирования с методикой Турнера-Шевякова, аккомодированной под условия ВКМС.

Таблица 2

	Глибника на казар	Степень нагружения целиков		
Пласт	ли пласта, м	По методике [1]	Математическое моделирование	
верхний	391	0.336	0.336	
нижний	398.1	0.383	0.382	

Как уже отмечалось, при двухпластовой отработке формируется взаимосвязанная система очистных камер, которая заведомо должна оказывать влияние на степень нагружения целиков. В таком случае одним из главных факторов, влияющих на степень МКЦ, является мощность технологического междупластья. Выполнена серия численных экспериментов, направленная на определение степени нагружения междукамерных целиков при двухпластовой отработке с несоосным расположением очистных камер и различными мощностями междупластья. Интервал изменения мощности междупластья составил от 2 до 8 м с частотой дискретизации 1 м.

В качестве иллюстрации на рис. 2 представлены распределения нормированной величины интенсивности касательных напряжений в двухпластовом камерном блоке при несоосном расположении камер для различных мощностей междупластья. Как видно, междукамерные целики находятся в разгруженном состоянии, что отражается на значениях степени их нагружения. Относительное сопоставление оценок степени нагружения целиков при несоосном расположении камер в зависимости от мощности междупластья выполнялось согласно следующему соотношению:

$$R = (C_m/C_0) \cdot 100 \,\%,\tag{4}$$

где C_m – степень нагружения, рассчитанная методом математического моделирования, C_0 – по методике [1]. На рис. З представлены результаты этого сопоставления. По отношению к расчетным оценкам по стандартной методике Турнера-Шевякова [1] полученные величины степени нагружения междукамерных целиков определяются более низкими значениями. Особенно выраженно это проявляется при мощности междупластья менее 4 м. Формально это указывает на возможность повышения извлечения руды при несоосном расположении очистных камер.

Однако при этом возникает опасность обрушения целика с верхнего пласта в камеру нижнего пласта вследствие формирования высоких напряжений в краевых частях междупластья, пронизывающих его по всей высоте.

Рис. 2. Распределение нормированной величины интенсивности касательных напряжений при двухпластовой отработке с несоосным расположением очистных камер и различных мощностях междупластья

Рис. 3. Сопоставление оценок степени нагружения междукамерных целиков на верхнем пласте (1) и нижнем (2) от мощности технологического междупластья при несоосном расположении очистных камер

Это хорошо иллюстрируется на рис. 2 при мощностях междупластья менее 4 м, где показатель нормированной величины интенсивности касательных напряжений увеличивается до значений K > 0.6.

В этой связи для анализа возможности повышения извлечения руды за счет несоосного расположения очистных камер требуется выполнение дополнительных детализированных геомеханических исследований с использованием более сложных упругопластических или вязко-упругопластических моделей сплошной среды, с учетом критериев разрушения горных пород, а также параметров отработки пластов для конкретных горно-геологических и горнотехнических условий разработки.

Таким образом, методами математического моделирования выполнена оценка степени нагружения целиков в случае совместной отработки двух сильвинитовых пластов с несоосным расположением очистных камер. Расчеты показали, что при принятых параметрах системы разработки степень нагружения МКЦ оказывается меньше по сравнению со значениями, полученными по методике Турнера-Шевякова, особенно при мощности технологического междупластья менее 4 м. Вместе с тем при несоосном расположении очистных камер могут возникнуть предпосылки к обрушению целиков верхнего отрабатываемого пласта в выработанное пространство нижнего. Обоснование реальных перспектив повышения степени извлечения полезного ископаемого из недр за счет несоосного расположения очистных камер требует дополнительных геомеханических исследований.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

 Указания по защите рудников от затопления и охране подрабатываемых объектов на Верхнекамском месторождении калийно-магниевых солей: утв. ПАО «Уралкалий», ЗАО «Верхнекамская калийная компания», ООО «ЕвроХим-Усольский Калийный комбинат». – введ. в действие 30.03.2017 в ред. 2014 г. – Пермь; Березники, 2014. – 130 с.

- 2. Ломакин И. С. Деформирование и разрушение несущих элементов камерной системы разработки в условиях слоисто-неоднородного строения породного массива: дис. ... к.т.н.: 25.00.20 / Ломакин Иван Сергеевич. Пермь, 2015. 197 с.
- 3. Baryakh A.A., Samodelkina N.A. To the calculation of pillar stability under condition of chamber mining // Journal of Mining Science. 2007. V. 43, № 1. P. 8-16.
- 4. Zienkiewicz O.S., Taylor R.L., Fox D.D. The Finite Element Method for Solid and Structural Mechanics. 7th edition. Oxford: Butterworth-Heinemann, Waltham, 2014. 672 p. DOI: 10.1016/C2009-0-26332-X.
- 5. Фадеев А.Б. Метод конечных элементов в геомеханике. М.: Недра, 1987. 221 с.: ил.

УДК 552.53

DOI:10.7242/echo.2022.4.8

ХАРАКТЕРИЗАЦИЯ ВНУТРЕННЕЙ СТРУКТУРЫ СИЛЬВИНИТА ПО ДАННЫМ РЕНТГЕНОВСКОЙ МИКРОТОМОГРАФИИ

И.А. Пантелеев¹, А.С. Соколов², А.А. Барях² ¹Институт механики сплошных сред УрО РАН, г. Пермь ²Горный институт УрО РАН, г. Пермь

Аннотация: С использованием микротомографа SkiyScan 1272 Bruker проведена съемка образца красного сильвинита размером 20×18×21 мм, включающего две минеральные фазы, соответствующие сильвину и галиту. На основе трехмерных рентгеновских томографических изображений определены объемное содержание каждой фазы и заполненные воздухом нарушения сплошности материала (поры, микротрещины, межзеренные контакты). Для нарушений сплошности вычислены характерные максимальный линейный размер, объем и коэффициент сферичности. Показано, что по объему все выделенные объекты разделяются на пять групп, четыре из которых представляют пороподобные дефекты, а одна – трещиноподобные дефекты.

Ключевые слова: сильвинит, томография, морфологический анализ, поры, трещины.

Введение

В результате многолетних экспериментальных исследований деформационного поведения соляных пород Верхнекамского месторождения при различных видах нагружения показано, что коэффициент вариации механических и прочностных свойств может превышать 30% даже для образцов, изготовленных из одного монолита [1]. Причины такого разброса значений многообразны [2]: вариации объемного содержания различных минералов, вариация среднего размера зерен, наличие разномасштабных несплошностей различной природы, содержание глинистого материала, влажность и т.д.

Петрологическое описание конкретных образцов, характеризация их внутренней структуры, как правило, базируются на описании шлифов и результатах сканирующей (растровой) электронной микроскопии (РЭМ). Шлифы подходят для оценки истории образования и формирования породы, однако возможности детального описания строения с помощью этого метода весьма ограничены ввиду низкого разрешения (не выше толщины шлифа, около 5-40 мкм), присутствия минеральных зерен различной оптической плотности, которые не всегда позволяют с достаточной точностью провести интерпретацию изображения. С другой стороны, при исследовании шлифов есть возможность получения изображений в скрещенных и параллельных николях, что позволяет определять ориентацию кристаллов. РЭМ дает изображения высочайшего разрешения до единиц нм, но они являются двухмерными проекциями трехмерных поверхностей сколов. Основным недостатком вышеперечисленных методов является их двухмерность и