УДК 550.831+551.241

DOI:10.7242/echo.2022.2.16

ПРИМЕНЕНИЕ ГРАВИМЕТРИИ ДЛЯ ИЗУЧЕНИЯ ЗЕМНОЙ КОРЫ

М.С. Чадаев

Горный институт УрО РАН, г. Пермь

Аннотация: Исследования ориентированы на картирование границы Мохо и отсюда установление мощности и типа земной коры, необходимых для обоснования внешней границы континентального шельфа (ВГКШ). Обширный шельф и склон Арктического региона содержат богатые залежи нефти и природного газа, месторождения твердых полезных ископаемых. С разделом Мохо связано формирование структурновещественных и разломных форм верхней земной коры, проявление магматической и вулканогенной активности, участвующей в образовании и размещении рудных и углеводородных полезных ископаемых, смена основных пород ультраосновными, что обеспечивает аномальную плотность на границе порядка 0,2 - 0,3 г/см³. Наряду с геолого-геофизическими используются радиометрические, геохимические, геоморфологические, изотопные и другие методы. Путем изучения микроэлементов обсуждаются вопросы о первичном составе нефти, указывающем на участие продуктов мантийных процессов в генезисе нефти.

Основными геофизическими методами картирования служат сейсморазведка и гравиразведка. Работы получили широкую мировую известность. Разработан ряд новых сейсмических глобальных карт с использованием результатов гравиметрии в Австралии, США, Италии и других странах. Получили дальнейшее развитие технологии создания плотностных моделей литосферы путем последовательного решения прямой и обратной задач гравиметрии.

Автором при обработке гравиметрических данных применена система ВЕКТОР. Использованы опубликованные геофизические и геологические данные, включая карту European Moho (28 N-86 N, 40 W-70 E), (2009).

Ключевые слова: ГСЗ, гравиметрия, ВЕКТОР, земная кора, граница Мохо, Фенноскандинавский щит, Северный Ледовитый океан, нефтегазовый пояс.

ФЕННОСКАНДИНАВСКИЙ ЩИТ

Внешняя граница Фенноскандинавского щита, включая Кольский полуостров, контролируется гравитационными аномалиями. Осадочные образования имеют небольшое распространение. Источником сведений о вещественном составе пород служат глубинные интрузии и донно-каменный материал. Петрофизическая граница Мохо, разделяющая земную кору и верхнюю мантию Земли, рядом исследователей характеризуется фазовым переходом вещества пород верхней мантии. В ряде случаев поверхность рассматривается как изостатическая. Используется [10, 11] комплекс гравиметрических, сейсмических, магнитных и других параметрических данных, а также учитываются изотопно-геохимические критерии.

Вместе с тем изучение земной коры в пределах щита представляет определенные трудности [10], связанные со сложным геологическим строением и в ряде случаев с большой глубиной залегания раздела Мохо, с водными преградами.

Глубинные профили

На рис. 1 (вверху) приведен сканированный (плоскостной) гравиметрический разрез, полученный в системе ВЕКТОР.

На разрезе *вверху* отчетливо отражается (рис. 1) массивность строения изверженных пород разной плотности щита. Блоки пониженной плотности пород обусловлены пониженной плотностью преимущественно гранитных блоков пород.

Внизу рисунка дан профиль границы Мохо по геотраверсу. Впадина (примерно между пикетами 400-800 км) граничит здесь с западным берегом Балтийского моря. Приподнятое положение границы Мохо (пикеты 1100-1600 км) занимает северная часть щита.

Рис. 1. Глубинный гравиметрический разрез в системе ВЕКТОР (вверху) и профиль глубины до поверхности Мохо по геотраверсу Европейский 1 («Феннолора») в пределах Фенноскандинавского щита.

1 – отметка широты среза; 2 – пересечение срезов [11]; 3 – золоторудные зоны (пояса);

4 – золоторудные месторождения; 5 – граница Мохо [12] по профилю «Феннолора»

БАРЕНЦЕВО МОРЕ

На рис. 2 приведен разрез через известные локальные поднятия и нефтегазовые месторождения в Баренцевом море. Нетрудно заметить, что изображенные на рис. 1 и рис. 2 глубинные разрезы различаются по своему геологическому строению, что характеризует достаточно высокую разрешимость метода ВЕКТОР по плотности при изучении глубинного строения Земли. Приподнятые участки Мохо (поднятия) проявляются положительным аномалиям с амплитудой порядка 2-4 мГал и более, а пониженные (впадины) – отрицательными значениями. Местоположение глубинной отрицательной аномалии (синий цвет) южнее широты 60° в.д. соотносится с акваторией Боснийского залива.

Шельф Баренцева и Карского морей – молодая нефтегазоносная провинция. Континентальный шельф и склон Арктического региона содержат богатые залежи нефти и природного газа, месторождения твердых полезных ископаемых.

На морском разрезе фиксируются в виде даек поднятия изверженных пород на шельфе: области Мурманской, Арктической, Штокмановской.

Аномалии в области Мурманской и Лудловской структур, имеют заложение в верхней мантии. Интенсивная округлой формы аномалия в районе Адмиралтейской и Пахтусовской (Адмиралтейский вал) обусловлена внутрикоровыми источниками изверженных пород типа базальтов.

В районе Мурманской, Арктической, Штокмановской структур глубина до поверхности Мохо составляет примерно 36 км. Севернее в пределах изобаты 200 м (область шельфа в интервалах Шахмановской и Крестовской структур) граница Мохо характеризуется повышенным положением; Лудловское локальное поднятие соответствует наиболее высокому положению границы Мохо (рис. 2). Местоположение характеризуется погружением Адмиралтейского поднятия мантийного слоя. Интенсивная положительная «бескорневая» гравиметрическая региональная аномалия здесь обусловлена в основном выступом архейско-протерозойского кристаллического фундамента.

Рис. 2. Вертикальный разрез гравитационного поля в системе ВЕКТОР. Структуры: 1 – Мурманская, 2 – Штокмановская, 3 – Лудловская, 8 – Крестовская, 6 – Адмиралтейская, 7 – Арктическая, 9 – Пахтусовская.

М* – рельеф границы Мохо (прогноз). «Перегиб» – изгиб линии разреза

Мантийное заложение на юго-западе (Мурманское поднятие) и на северо-востоке (Адмиралтейское и Пахтусовское поднятия) имеют источники [11], связанные со складчатыми основаниями соответственно Кольского и Адмиралтейского выступов. Пространство между выступами занимает известный Южно-Баренцевский рифт, заполненный образованиями, которые формируют отрицательную аномалию в системе ВЕКТОР. Таким образом на фоне общего аномального фона отчетливо проявляются базальтовые интрузии (пикеты 100, 450, 700 и 1000 км).

Ниже глубины 80 км на разрезе (рис. 2) аномальное поле в системе BEКТОР характеризуется интенсивным отрицательным слоем, который может рассматриваться по классификации B.E Хаина как астеносферный.

Система ВЕКТОР, относимая к геотомографическим методам обработки потенциальных полей, основана на осреднении горизонтальных градиентов силы тяжести и создании трехмерного интерпретационного куба, на котором можно получить срезы по заданным направлениям. Соответствующая программа обработки данных апробирована, результаты помещены в работах [1, 10, 11, 12] при решении ряда геологоразведочных задач, в том числе глубинного изучения земной коры.

Аномалии в области Мурманской и Лудловской структур имеют заложение в верхней мантии. Интенсивная округлой формы аномалия в районе Адмиралтейской и Пахтусовской (Адмиралтейский вал) обусловлена внутрикоровыми источниками изверженных пород типа базальтов. Этот факт свидетельствует о глубинном основании структур.

В районе Мурманской, Арктической, Штокмановской структур глубина до поверхности Мохо составляет примерно 36 км. Севернее в пределах изобаты 200 м (область шельфа) структуры Штокмановская и Крестовская характеризуются повышенным положением границы Мохо, а Лудловское локальное поднятие соответствует наиболее высокому положению границы Мохо (рис. 2). Местоположение Адмиралтейского поднятия характеризуется погружением мантийного слоя. Интенсивная положительная «бескорневая» гравиметрическая региональная аномалия здесь обусловлена в основном выступом архейско-протерозойского кристаллического фундамента.

Интенсивные положительные аномалии мантийного заложения на юго-западе (Мурманское поднятие) и на северо-востоке (Адмиралтейское и Пахтусовское под-

нятия) имеют источники [11], связанные со складчатыми основаниями, соответственно, Кольского и Адмиралтейского выступов. Пространство между выступами занимает известный Южно-Баренцевский рифт, заполненный образованиями, которые формируют отрицательную аномалию в системе ВЕКТОР. На фоне общего аномального фона отчетливо проявляются базальтовые интрузии (пикеты 100, 450, 700 и 1000 км). Ниже глубины 80 км на разрезе (рис. 2) аномальное поле в системе ВЕКТОР характеризуется интенсивным отрицательным слоем, который может рассматриваться в версии В.Е Хаина как астеносферный. В итоге возможно получить представление о глубинном структурном ряде.

СЕВЕРНЫЙ ЛЕДОВИТЫЙ ОКЕАН

На рис. 3 приведена скоростная модель земной коры и верхней мантии по геотраверсу Трансарктика 1989-1991, заимствованная из работы [7].

Рис. 3. Скоростная модель земной коры и верхней мантии по геотраверсу [7]. Утолщенные линии – сейсмические границы, разделяющие слои, тонкие линии – изолинии скорости с интервалом 0,1 км/с, треугольники – пункты взрыва

Скоростной разрез земной коры (рис. 3) визуально сопоставлен с разрезом в системе ВЕКТОР (рис. 4) то есть, по сути, с плотностным. Дополнительно на разрез выведены гравитационные аномалии, полученные в системе ПОЛЮС, которые позволяют оценить положение по глубине: выше границы Мохо или до границы, что служит также определяющим фактором картирования границы в разрезе. Малопротяженные субгоризонтальные границы выше поверхности Мохо, создаваемые отрицательными, например, вблизи отметки 800 км, и положительными полюсами, характеризуют расслоение пород нижней земной коры.

Рис. 4. Вертикальный разрез 3D диаграммы BEKTOP, практически по линии скоростного разреза на рис. 3. Полюсы [9]: 1 – положительные, 2 – отрицательные. 3 – прогнозное положение границы Мохо по данным гравиметрии

СПОСОБ СОЗДАНИЯ НАЧАЛЬНОЙ ИНТЕРПРЕТАЦИОННОЙ МОДЕЛИ

Система ВЕКТОР, относимая к геотомографическим методам обработки потенциальных полей, основана на осреднении горизонтальных градиентов силы тяжести. Соответствующая программа апробирована [1, 10, 11, 12] при решении ряда геологоразведочных задач, в том числе глубинного изучения земной коры.

Для осуществления трудновыполнимой в ряде случаев задачи по привязке гравиметрической информации по глубине предложен способ, основанный на совместном использовании системы BEKTOP и программы решения обратной задачи гравиразведки способом подбора. В работе автором использована программа PODBOR_ST, разработанная А.С. Долгалем [3].

Алгоритм решения. На разрезе глубинного профиля составляется (двухмерный вариант) контур аномалии (рис. 5), в рамках которого решается задача подбора.

Рис. 5. Результат решения обратной задачи гравиразведки

График аномалий силы тяжести в редукции Буге (утолщенная линия) и рассчитанный график силы тяжести источника в рамках контура (тонкая линия) в системе ВЕК-ТОР. *Вверху*. Положение контура и собственно контур получены по данным системы ВЕКТОР. *Внизу*.

В результате решения получены положение и форма аномалиеобразующего тела заданного класса, наиболее точно описывающие наблюдения: принят четырехугольный контур (для двумерной постановки задачи) с дефектом плотности 0,2 г/см³. Результат модельного подбора и исходное поле представлены на рис. 5; среднеквадратическая погрешность составила 3,16 мГал при общей амплитуде поля 26,8 мГал.

НЕФТЕГАЗОВЫЙ ПОЯС ЗЕМЛИ

Нефтегазовые пояса относятся к семейству геологических систем регионального развития Земли [5].

Рис. 6. Трансформанта гравитационного поля ВЕКТОР, отражающая строение нижней коры. Обозначения: 1 - контуры локальных структур; 2 – граница Камско-Кинельской системы прогибов (ККСП); севернее г. Усинска находится нефтегазогеологическая область с месторождениями нефти и газа О₂-D₁; 3 – нулевая изолиния трансформанты; 4 – Адмиралтейское поднятие. Тимано-Ι _ Печорская НГП, II – Волго-Уральская НГП

Вышеизложенное дает основание на уровне раздела Мохо (рис. 6) объединить нефтегазоносные бассейны, начиная с территории Пермского края и севернее вплоть до Земли Франца Иосифа, в одну простирающуюся в меридиональном направлении Приуральскую систему нефтегазоносных впадин, пространственно совмещенную с протяженной отрицательной гравитационной аномальной зоной на трансформанте в системе BEKTOP.

Для Русской плиты общность субмеридионального направления структурных форм «нарушает» обширный Коми-Пермяцкий свод, имеющий форму и простирание иные, чем по кристаллическому фундаменту. Здесь характерна сложная сеть глубинных разломов. Свод имеет глубинное заложение. Фиксируется пространственная закономерность общего планового совпадения структурных форм фундамента и нижних этажей земной коры.

выводы

Геохимические и изотопные корреляции указывают, что происхождение нефтяных залежей может быть связано с эндогенной активностью Земли, образование и формирование месторождений – с характером геодинамического развития и эволюцией литосферы, что вносит важный аспект в актуальную задачу изучения глубинного строения Земли: раздела между земной корой и верхней мантией и картирования магматических диапиров.

Анализ позволяет известные нефтегазоносные впадины в западной части ВЕП пространственно объединить с протяженной отрицательной гравитационной аномальной зоной на трансформанте в системе ВЕКТОР, что позволяет рассматривать их относящимися к единой Приуральской системе.

Для осуществления трудновыполнимой по ряду причин задачи привязки гравиметрического профиля по глубине предложен способ, основанный на совместном использовании системы ВЕКТОР, как и программы решения обратной задачи гравиразведки, например, способом подбора.

Начальную структурно-плотностную глубинную модель для решения обратной задачи гравиразведки рекомендуется создавать в системе BEKTOP, что позволяет получить сведения о глубине и форме аномалиеобразующего тела.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- Бычков С.Г. Методы обработки и интерпретации гравиметрических наблюдений при решении задач нефтегазовой геологии / ГИ УрО РАН; отв. ред. В.И. Костицын. – Екатеринбург: УрО РАН, 2010. – 188 с.: ил.
- Глазнев В.Н., Минц М.В., Муравина О.М. Плотностное моделирование земной коры центральной части Восточно-Европейской платформы // Вестн. КРАУНЦ. Сер. Науки о Земле. 2016. № 1 (29). С. 53-63.
- 3. Долгаль А.С. Аппроксимация геопотенциальных полей эквивалентными источниками при решении практических задач // Геофизический журнал. 1999. Т. 21, № 4. С. 71-80.
- 4. Доленко Г.Н. Геологические, геофизические и геохимические данные мантийного происхождения нефти и газа // Глубинная нефть. 2013. № 6. С. 934-941.
- 5. Золоев К.К., Додин Д.А., Коротеев В.А., Рыльков С.А., Чернышев Н.М. Урал крупнейшая провинция мировой системы подвижных поясов Земли и связанных с ними уникальных и суперкрупных месторождений полезных ископаемых // Литосфера. – 2007. – № 6. – С. 3-14.
- 6. Калинко М.К. Неорганическое происхождение нефти в свете современных данных. М.: Недра, 1968. 336 с.
- 7. Кашубин С.Н., Павленкова Н.И., Петров О.В., Мильштейн Е.Д., Шокальский С.П., Эринчек Ю.М. Типы земной коры Циркумполярной Арктики // Региональная геология и металлогения. 2013. № 55. С. 5-20.

- 8. Маракушев А.А., Писоцкий Б.И., Панеях Н.А., Готтих Р.П. Геохимическая специфика нефти и происхождение ее месторождений // Доклады РАН. – 2004. – Т. 398, № 6. – С. С. 795-799.
- 9. Простолупов Г.В., Тарантин М.В. Полярная трансформация производных гравитационного потенциала // Геофизика. 2013. № 2. С. 13-18.
- Чадаев М.С., Костицын В.И., Гершанок В.А., Ибламинов Р.Г., Тарантин М.В., Простолупов Г.В. Геолого-геофизические методы изучения земной коры: Монография / под общ. ред. М.С. Чадаева; ПГНИУ, ГИ УрО РАН. – Пермь, 2019. – 148 с.
- 11. Чадаев М.С., Костицын В.И., Гершанок В.А., Тарантин М.В., Простолупов Г.В. Геофизические исследования земной коры Европейского севера / под общ. ред. М.С. Чадаева; ПГНИУ, ГИ УрО РАН. – Пермь, 2020. – 99 с.
- 12. Шаров Н.В. Литосфера Северной Европы по сейсмическим данным. Петрозаводск: Карельский науч. центр РАН, 2017. 168 с.: ил.
- 13. Grad, M., Tiira, T. The Moho depth map of the European Plate // Geophysical journal international. 2009. V. 176, № 1. C. 279-292. https://doi: 10.1111/j.1365-246X.2008.03919.x.