Горное эхо № 3 (84) 2021

9. McPherson M.J. Subsurface ventilation and Environmental engineering. – London: Chapman & Hall, 2009. – 935 p.

- 10. Brake R., Donoghue M., Bates G. A new generation of health and Safety Protocols for working in heat // Queensland Mining industry Health and Safety Conference. Yeppoon, 1998. P. 1-11.
- 11. Зайцев А.В., Семин М.А., Клюкин Ю.А. Исследование критериев нормирования микроклиматических условий в горных выработках // Горный информационно-аналитический бюллетень (научнотехнический журнал). − 2015. № 12. С. 151-156.
- 12. Методика проведения специальной оценки условий труда: Утв. 24.01.2014, № 33н. М.: ЗАО НТЦ ПБ, 2014. 64 с.
- 13. Зайцев А.В., Бородавкин Д.А., Поляков И.В. Обеспечение безопасных условий труда по фактору микроклимата для условий глубокого калийного рудника // Горное эхо. 2020. № 1 (78). С. 72-79. DOI: 10.7242/echo.2020.1.16.
- 14. Зайцев А.В., Пересторонин М.О., Пугин А.В. Экспериментальное исследование влияния количества воздуха в лаве на формирование микроклимата // Горное эхо. 2021. № 2 (83). С. 74-80. DOI: 10.7242/echo.2021.2.15.

УДК 622.831.322

DOI:10.7242/echo.2021.3.17

ПЕРЕСЕЧЕНИЕ ВЕРТИКАЛЬНЫМИ СТВОЛАМИ ПОРОД, ПОТЕНЦИАЛЬНО ОПАСНЫХ ПО ГАЗОДИНАМИЧЕСКИМ ЯВЛЕНИЯМ В УСЛОВИЯХ НЕЖИНСКОГО ГОКА ИООО «СЛАВКАЛИЙ»

E.A. Нестеров Горный институт УрО РАН, г. Пермь

Аннотация. Обобщены способы дегазации при вскрытии и пересечении различных выбросоопасных пород. Для безопасной проходки шахтных стволов стволопроходческим комплексом SBR на шахтном поле Нежинского ГОКа предложен специальный режим управление газодинамическими процессами и потенциальной (природной) опасностью проявления газодинамических явлений, который заключается в поинтервальном бурении по центру ствола разведочно-дегазационной скважины.

Ключевые слова: калийно-магниевые соли, I и II калийные горизонты, разведочно-дегазационная скважина, способы дегазации, вскрытие выбросоопасных пород.

Введение

Нежинский участок Старобинского месторождения калийных солей площадью около 500 км² расположен в Любаньском районе Минской области и примыкает к восточной границе шахтного поля 4 РУ ОАО «Беларуськалий». Разведанные балансовые запасы рудника Нежинского ГОКа для отработки восточной части Нежинского участка Старобинского месторождения калийных солей слагаются из запасов I, II и III калийных горизонтов. Пласты калийных горизонтов имеют сложное строение и состоят из ритмичного чередования слоев каменной соли, сильвинитов и галопелитов [1, 2].

В течение первых 20-30 лет эксплуатации проектная мощность рудника Нежинского ГОКа будет поддерживаться за счет освоения запасов I и II калийных горизонтов. В настоящее время на шахтном поле Нежинского ГОКа ИООО «Славкалий» ведется проходка шахтных стволов стволопроходческим комплексом SBR.

Практика ведения горных работ в рудниках на Старобинском месторождении калийных солей свидетельствует о том, что соляные породы газоносны и при ведении горных работ могут происходить обычные и динамические выделения свободных газов, которые могут представлять серьезную угрозу жизни шахтеров. Динамические га-

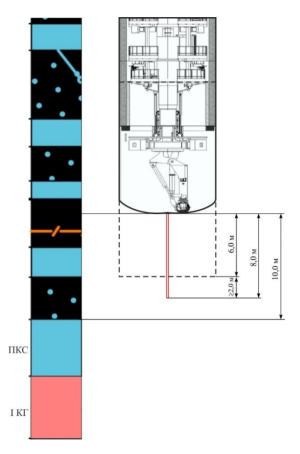
зовыделения происходят в виде газодинамических явлений, представленных внезапными и инициированными выбросами соли и газа, обрушениями пород кровли (разрушениями пород почвы), сопровождающимися газовыделением, и отжимами призабойной части пород. Для предотвращения воздействия поражающих факторов газодинамических явлений на шахтеров разрабатывается и применяется комплекс мер по прогнозированию, предупреждению и локализации последствий газодинамических явлений [3-8].

Разработка комплекса мер по прогнозированию, предупреждению и локализации последствий газодинамических явлений осуществляется на основании Заключения о составе, масштабе, местах и характере выделения газов при ведении горных работ на II калийном горизонте для условий шахтного поля рудника Нежинского ГОКа.

В связи с этим вопрос пересечения вскрывающими выработками I и II калийных горизонтов, а также проведения экспериментальных исследований газоносности и газодинамических характеристик соляных пород по свободным газам является весьма актуальным на данном этапе освоения месторождения.

Способы дегазации при вскрытии и пересечении выбросоопасных пород

Существующие способы дегазации угольных пластов, песчаников, соляных и глинисто-соляных пород при вскрытии вертикальными стволами газоносных и опасных по газодинамическим явлениям пластов и вмещающих пород можно свести к следующему:


- при вскрытии стволами угольных пластов для предотвращения внезапных выбросов угля и газа производится бурение дренажных скважин, возведение каркасной крепи, гидрообработка угольного массива, а в сложных горно-геологических условиях допускается сочетание этих способов. Вскрытие выбросоопасных пластов стволами, проводимыми способом бурения, производится без применения способов предотвращения внезапных выбросов при условии дистанционного управления комплексом с поверхности;
- для предотвращения внезапных выбросов песчаников при проходке вертикальных стволов исследователями применялось несколько способов: торпедирование песчаников, проведение опережающей выработки уменьшенного сечения, образование разгрузочных щелей, увлажнение породного массива, методы локализации (ограничения развития) выбросов — устройство специальных заградительных перемычек, изменение паспорта буровзрывных работ и изменение порядка взрывания, а также безвзрывной способ проходки стволов механизированными комплексами. Безвзрывной способ проходки стволов в породах различной степени выбросоопасности механизированным комплексом сводится к проходке с оптимальной скоростью и рациональной формой забоя ствола, позволяющей управлять разрушением пород;
- абсолютное большинство шахтных стволов при вскрытии и пересечении соляных и глинисто-соляных пород на месторождениях калийных солей пройдено буровзрывным способом по технологии проходки стволов, не предусматривающей дегазацию пород впереди забоя ствола. Опыт проведения клетевого ствола стволопроходческим агрегатом АСП-8.0 при строительстве Усольского ГОКа на Палашерском участке Верхнекамского месторождения калийных солей показал возможность дегазации соляных и глинисто-соляных пород сильвинитовой зоны бурением одной опережающей разведочно-дегазационной скважины диаметром 100 мм [9, 10].

Горное эхо № 3 (84) 2021

В связи с этим для предотвращения потенциальной газодинамической опасности соляных и глинисто-соляных пород I и II калийных горизонтов и вмещающих пород на Нежинском участке Старобинского месторождения калийных солей в процессе проходки стволов стволопроходческим комплексом SBR наиболее перспективным мероприятием будет являться бурение разведочно-дегазационной скважины (шпура), пересекающей по нормали слоистую структуру пород впереди забоя ствола.

Параметры режимов вскрытия и пересечения стволами I и II калийных горизонтов

Режим вскрытия и пересечения стволами I и II калийных горизонтов и вмещающих пород (соляных и глинисто-карбонатных пачек, залегающих ниже кровли 29 соляной пачки) вводится при проходке ствола с расстояния 10 м до кровли 29 соляной пачки (кровли слоя каменной соли, покрывающей I калийный горизонт) и действует до окончания проходки ствола (рисунок 1). При проходке стволов стволопроходческим комплексом SBR в данном режиме управление газодинамическими процессами и потенциальной (природной) опасностью проявления газодинамических явлений производиться путем поинтервальной проходки ствола, бурением по центру ствола одной разведочнодегазационной скважины глубиной не менее 8,0 м диаметром более 45 мм при неснижаемом опережении забоем скважины забоя ствола не менее чем на 2,0 м и проведением научного сопровождения проходки шахтных стволов, заключающегося в проведении научно-исследовательских работ по изучению газоносности и газодинамических характеристик пород I и II калийных горизонтов, глинисто-карбонатных и соляных пачек для своевременной корректировки и уточнению мероприятий по обеспечению безопасной проходки стволов.

Рис. 1. Параметры бурения разведочно–дегазационной скважины при проходке ствола стволопроходческим комплексом SBR

Допускается проходка стволов на отдельных участках геологического разреза буровзрывным способом (пересечение слоев песчаника, доломита и других прочных пород) без бурения в забой разведочно-дегазационной скважины. Бурение в забой разведочно-дегазационной скважины возобновляется при переходе от буровзрывного на механизированный способ проходки шахтных стволов стволопроходческим комплексом SBR.

Допускается режим проходки стволов стволопроходческим комплексом SBR при вскрытии и пересечении стволами I и II калийных горизонтов и вмещающих пород (соляных и глинисто-карбонатных пачек, залегающих ниже кровли 29 соляной пачки) без бурения разведочно-дегазационной скважины при условии дистанционного управления комплексом с безопасного расстояния.

Заключение

Результаты исследований по разработке параметров способов дегазации при вскрытии и пересечении шахтными стволами I и II калийных горизонтов и вмещающих пород на Нежинском участке Старобинского месторождения калийных солей позволяют сделать следующие выводы. В связи с тем, что механизированная проходка шахтных стволов рудника Нежинского ГОК стволопроходческим комплексом SBR в условиях Старобинского месторождения калийных солей будет применяться впервые, то необходимо исходить из потенциальной (природной) опасности проявления газодинамических явлений при проходке шахтных стволов по соляным и глинисто-карбонатным пачкам, несмотря на весьма низкую газоносность данных пород по свободным газам. Для успешного и эффективного применения механизированной проходки стволов на руднике Нежинского ГОК стволопроходческим комплексом SBR необходимо предусмотреть мероприятия по управлению газодинамическими процессами при проходке шахтных стволов. Управление газодинамическими процессами и потенциальной (природной) опасностью проявления газодинамических явлений при вскрытии и пересечении шахтными стволами I и II калийных горизонтов и вмещающих пород, а также при проходке шахтных стволов по соляным и глинисто-карбонатным пачкам стволопроходческим комплексом SBR может производиться путем бурения по центру ствола одной дегазационной скважины глубиной не менее 8,0 м диаметром более 45 мм при неснижаемом опережении забоем скважины забоя ствола не менее 2,0 м.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Разработка исходных данных для проектирования скипового и клетевого шахтных стволов (научнометодическое сопровождение при бурении скважин, лабораторные работы и исходные данные). В 11 кн. / ОАО «Белгорхимпром»; Богдан С.И., Кацемба С.Н. Минск, 2014.
- 2. Андрейко С.С., Калугин П.А., Щерба В.Я. Газодинамические явления в калийных рудниках: Генезис, прогноз и управление / под. ред. В.Я. Прушака. Минск: Выш. шк., 2000. 335 с.: ил.
- 3. Проскуряков Н.М. Внезапные выбросы породы и газа в калийных рудниках. М.: Недра, 1980. 264 с
- 4. Андрейко С.С., Иванов О.В. Результаты исследований газоносности и компонентного состава свободных газов в породах I калийного горизонта Старобинского месторождения // Горное Эхо. 2004. № 2 (16). С. 15-18.
- 5. Литвиновская Н.А. Определение параметров мелкошпурового и глубокого профилактического бурения дегазационных шпуров в почву подготовительных горных выработок I калийного горизонта Старобинского месторождения // Вестн. ПНИПУ: Геология, нефтегазовое и горное дело. − 2011. − № 1. − С. 128-135.
- 6. Предупреждение газодинамических явлений в угольных шахтах: Сб. документов / Колл. авт. 4-е изд., исправ. М.: ЗАО НТЦ ПБ, 2011. 304 с. (Документы по безопасности, надзорной и разрешительной деятельности в угольной промышленности: сер. 05, вып. 2).

Горное эхо № 3 (84) 2021

7. Николин В.И., Лысиков Б.А., Ярембаш И.Ф. Выбросоопасные породы больших глубин / МакНИИ. – Донецк: Донбасс, 1968. – 80 с.: ил.

- 8. Литвин А.З., Поляков Н.М. Проходка стволов шахт специальными способами. М.: Недра, 1974. 324 с.: ил.
- 9. Концерн Herrenknecht: сайт. Текст электронный. URL: http://www.herrenknecht.com. (Дата обращения 12.09.2021).
- 10. Загвоздкин И.В., Чагинов А.В., Кузичкин А.Н., Кисиличин С.А. Механизированный способ проходки вертикальных шахтных стволов на месторождениях калийных солей // Безопасность труда в промышленности. 2013.— № 8. С. 40–41.

УДК 622.7

DOI:10.7242/echo.2021.3.18

РАЗРАБОТКА СИСТЕМЫ ДООХЛАЖДЕНИЯ ОБОРОТНЫХ ЗАСОЛЕННЫХ ВОД СИЛЬВИНИТОВОЙ ОБОГАТИТЕЛЬНОЙ ФАБРИКИ

Д.В. Ольховский, А.В. Зайцев, А.В. Шалимов, С.А. Бублик *Горный институт УрО РАН, г. Пермь*

Аннотация: В работе описаны проблемы охлаждения оборотных засоленных вод, характерные для сильвинитовых обогатительных фабрик калийных предприятий. Представлены краткие результаты обследования системы охлаждения оборотных засоленных вод сильвинитовой обогатительной фабрики 4-го рудоуправления. Сделаны выводы о возможности и способах доохлаждения оборотных засоленных вод. Описаны принципиальные схемы доохлаждения оборотных засоленных вод, приведены их пре-имущества и недостатки.

Ключевые слова: сильвинитовая обогатительная фабрика, системы охлаждения, вентиляторная градирня, холодильная машина, оборотные засоленные воды.

Введение

На сегодняшний день существует множество предприятий калийной промышленности, которые строились еще при СССР. За прошедшее время потребность мировых рынков в хлористом калии существенно выросла, и для удовлетворения их потребностей предприятия нарастили количество и мощность горнодобывающей техники, однако увеличить производительность наземного комплекса – горно-обогатительной фабрики – не так просто в силу множества причин, основной из которых является необходимость остановки работы всего рудника на время строительства или модернизации линий обогатительной фабрики и большие капитальные затраты. Помимо модернизации и строительства линий фабрики, возможно увеличение их производительности за счет снижения температуры оборотных засоленных вод (ОЗВ) в летний период, поступающих на вакуум кристаллизационные установки для конденсации паров щелока. Температура ОЗВ регулируются с помощью системы охлаждения, которая представляет из себя комплекс из 4х блоков по 6 вентиляторных мокрых градирен башенного типа [1-3]. Охлаждение воды с помощью градирен является наименее энергозатратным способом из ныне существующих, однако имеет недостаток в виде практически прямой зависимости минимально достижимой температуры воды от температуры мокрого термометра воздуха, подаваемого для охлаждения. В летний период в результате роста температуры и температуры мокрого термометра уличного воздуха минимальная температура, до которой существующие градирни способны охлаждать ОЗВ, растет и начинает превышать требуемую температуру в 18,5°C, достигая значения в 26°C в наиболее жаркие и влажные дни. В результате превышения температуры снижается производительность линий (см. таблицу 1), что приводит к экономическим потерям предприятия.