- Faust L.Y. Seismic velocity as a function of depth and geologic time // Geophysics. 1951. V. 16, № 2. -P. 192-206.
- 4. Faust L.Y. A velocity function including lithologic variations // Geophysics. 1953. V. 18. P 271-287.
- Заляев Н.З. Методика автоматизированной интерпретации геофизических исследований скважин. Минск.: Университетское, 1990. – 142 с.: ил.
- Пузырев Н.Н. Методы и объекты сейсмических исследований. Введение в общую сейсмологию. Новосибирск: Изд-во СО РАН: ОИГГМ. – 1997. – 299 с.: ил.
- 7. Сейсмическая стратиграфия. В 2-х ч. / под ред. Ч. Пейтона. М.: Мир. 1982. 374 с.: ил.
- Tesseral Engineering. Многопараметрическая числовая среда для сейсмического моделирования, обработки, QC, планирования и интерпретации. Руководство пользователя. – Текст электронный. – URL: <u>http://www.tesseral-geo.com/documentation/ru/general/ProductsOfTesseralTechnologies-ru.pdf</u>. (дата обращения 12.10.2021).

УДК 550.834

DOI:10.7242/echo.2021.3.13

РЕЗУЛЬТАТЫ МОНИТОРИНГА ПОТЕНЦИАЛЬНО-ОПАСНОГО УЧАСТКА ВЕРХНЕКАМСКОГО МЕСТОРОЖДЕНИЯ КАЛИЙНЫХ СОЛЕЙ МЕТОДОМ МНОГОКАНАЛЬНОГО АНАЛИЗА ПОВЕРХНОСТНЫХ ВОЛН

А.В. Чугаев

Горный институт УрО РАН, г. Пермь

Аннотация: Сейсморазведочный мониторинг потенциально-опасных участков на подработанной территории Верхнекамского месторождения калийных солей дополнен изучением попутно регистрируемых поверхностных волн Релея. Получены скоростные карты и вертикальные разрезы приповерхностной части массива на разных этапах мониторинга. С помощью статистического анализа скоростных характеристик выделен участок наибольшего изменения скоростей во времени. Данный участок пространственно совпадает с зоной наибольшей латеральной изменчивости скоростной характеристики в верхней части разреза. Совместная интерпретация результатов обработки поверхностных и отраженных волн указывает на наличие на указанном участке негативных техногенно-геологических процессов.

Ключевые слова: Верхнекамское месторождение, сейсморазведка, мониторинг, поверхностные волны, многоканальный анализ поверхностных волн.

Введение

На Верхнекамском месторождении калийных солей выделен ряд потенциально опасных участков, на которых ведутся режимные сейсмические наблюдения. Один из основных методов исследования – малоглубинная 2D сейсморазведка по методике многократных перекрытий [Санфиров, 2013]. При таких наблюдениях стандартной практикой является дополнительное изучение содержащихся в волновом поле поверхностных волн Релея по методике MASW (многоканальный анализ поверхностных волн) [Чугаев, 2012]. Методика MASW позволяет получать приповерхностных волн) [Чугаев, 2012]. Методика MASW позволяет получать приповерхностных волны [Рагк, 1999; Xia, 1999, Park, 2002; Lin, Lin, 2019; Park, 2020]. Для типичных условий возбуждения и регистрации сигнала на рассматриваемой территории максимальная глубина исследований составляет 30 м [Чугаев 2012].

Методика MASW включает следующие этапы: препроцессинг данных, расчет спектрально-временных распределений по каждой сейсмограмме, прослеживание дисперсионных кривых на спектрально-временном распределении, инверсия каждой кривой для получения одномерного разреза по одной сейсмограмме, построение сводного разреза по всему профилю. Разрез по одной сейсмограмме пространственно относится к

Рис. 1. Площадные распределения скоростей поперечных волн, полученные по методике MASW на первом этапе исследований, для различных интервалов глубин: а) 0-10 м; б) 10-20 м; в) 20-30 м

Результаты, приведенные в работе, получены в 2020-2021 гг. на потенциально опасном участке в пределах городской агломерации. Режимные наблюдения проводились по сети профилей. Регулярность повторения наблюдений для разных профилей варьировалась в зависимости от динамики изменения волновой картины на суммарных временнных разрезах отраженных волн и оценок упругих параметров породного массива, полученных на их основе.

По данным MASW первого этапа наблюдений построены площадные распределения скоростей поперечных волн (рис. 1). Скорости рассчитаны путем аппроксимации скоростей по профилям в заданных интервалах глубин 0-10 м, 10-20 м, 20-30 м и последующим построением карты скоростей.

На картах хорошо видно направление градиента скоростей с северо-запада на юговосток.

в) апрель 2021

По профилю 1 выполнено 3 этапа наблюдений с интервалом в 6 месяцев: май 2020 (А), октябрь 2020 (В), апрель 2021 (С). По каждому этапу выполнен расчет по методике MASW. Скоростные характеристики приведены на рис. 2. На изменение скоростной характеристики, получаемой с помощью поверхностных волн, влияет несколько факторов, основными из которых является напряженно-деформированное состояние массива, сезонные вариации состояния массива (преимущественно для самых верхних участков) и погрешности определения скоростей [Beaty, Schmitt, 2000; Lu, 2019].

Для того, чтобы оценить изменение скоростной характеристики, выполнено вычитание скоростных распределений: В-А, С-В, С-А. Результаты приведены на рис. 3. Пространственное изменение скоростей имеет разнонаправленный характер, поэтому для локализации участка негативных инженерно-геологических процессов используются специальные критерии их выделения [Чугаев, 2014].

Анализ начального распределения скоростей на изучаемом участке показывает, что наибольший градиент скоростей находится в интервале пикетов 200-350 м. Наибольшие изменения на разрезах изменения скоростей отмечаются на интервале пикетов 200-450 м.

Рис. 3. Изменение скоростей по профилю 1: а) октябрь 2020 относительно мая 2020; б) апрель 2021 относительно октября 2020; в) апрель 2021 относительно мая 2020

Интенсивные инженерно-геологические процессы сопровождаются перераспределением напряжений в массиве и изменением скоростей упругих волн, причем изменения происходят не обязательно в сторону уменьшения. Для локализации участков наибольшего изменения скоростей рассчитано стандартное отклонение по трем этапам измерений, после чего выполнено осреднение в окне с шириной осреднения по горизонтали 30 м, по вертикали 10 м (рис. 4).

На полученном распределении выделяется зона максимального изменения скоростей в интервале пикетов 200-400 м, где изменения затрагивают всю изучаемую поверхностными волнами толщу от поверхности до 30 м. Заметим, что данный участок профиля совпадает с зоной наибольшего латерального изменения скоростей. Кроме того, выделенная зона совпадает с аномалией волнового поля на временных разрезах сейсморазведки ОГТ (рис. 5), что указывает на наличие на указанном участке негативных техногенно-геологических процессов.

Рис. 4. Стандартное отклонение скоростей по трем наблюдениям

Рис. 5. Динамический временной разрез по данным сейсморазведки ОГТ

Выводы

Сейсморазведочный мониторинг потенциально-опасных участков на подработанной территории дополнен изучением попутно регистрируемых поверхностных волн Релея. Получены скоростные распределения приповерхностной части разреза на разных этапах мониторинга. С помощью статистического анализа скоростных характеристик выделен участок наибольшего изменения скоростей во времени. Данный участок пространственно совпадает с зоной наибольшей латеральной изменчивости скоростной характеристики в верхней части разреза. Совместная интерпретация результатов обработки поверхностных и отраженных волн указывает на наличие на указанном участке негативных техногенно-геологических процессов.

Исследование выполнено при финансовой поддержке Министерства науки и образования РФ в рамках соглашения по государственному заданию № 075-03-2021-374 от 29 декабря 2020 г.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Санфиров И.А., Степанов Ю.И., Фатькин К.Б., Герасимова И.Ю., Никифорова А.И Малоглубинные геофизические исследования на Верхнекамском месторождении калийных солей // Физикотехнические проблемы разработки полезных ископаемых. – 2013. – № 6. – С. 71-77.
- Чугаев А.В. Многоволновая сейсморазведка: возможности и практические приложения // Науки о Земле: новые горизонты в освоении недр: материалы 5-й Междунар. конф. и выставки. – СПб., 2012. – CD. – DOI: https://doi.org/10.3997/2214-4609.20143729.
- 3. Чугаев А.В. Критерии оценки качества мониторинга подрабатываемых территорий с помощью поверхностных волн // Горный информационно-аналитический бюллетень (научно-технический журнал). – 2014. – № 1. – С. 120-126.
- 4. Beaty K.S., Schmitt D. R. A study of near-surface seasonal variability using Rayleigh wave dispersion // SEG Technical Expanded Abstracts. 2000. V. 19, № 1. P. 1323-1326. DOI: 10.1190/1.1815641.
- Lin C-P., Lin C-H. Optimizing surface wave method for geotechnical site investigation // The 13th SEGJ International Symposium, 12-14 november 2018. – Tokyo, 2019. – P. 399-401. – DOI: https://doi.org/10.1190/SEGJ2018-102.1.
- Lu Z. Monitoring soil profile variations during rainfall events using the hf-masw method // Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, SAGEEP. – 2019. – V. 2019-march. – P. 181-186. – DOI: 10.4133/sageep.32-042.
- Park C., Cirone A., Rodrigues R. Evaluation of soil grouting by active-passive MASW Surveys // Fifth International Conference on Engineering Geophysics, 21-24 october 2019, Al Ain, UAE. 2020. P. 40-43. DOI: <u>https://doi.org/10.1190/iceg2019-010.1</u>.
- Park C.B., Miller R.D., Xia J. Multichannel analysis of surface waves // Geophysics. 1999. V. 64., № 3. – P. 800-808. – DOI: 10.1190/1.1444590.
- 9. Park C.B., Miller R.D., Miura H. Optimum field parameters of an MASW survey // SEGJ Extended Abstracts. Tokyo, 2002.
- 10. Xia J., Miller R.D., Park C.B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves // Geophysics. 1999. V. 64, № 3. P. 691-700. DOI: 10.1190/1.1444578.