ГОРНОПРОМЫШЛЕННАЯ ГЕОЛОГИЯ, ГИДРОЛОГИЯ И ГЕОЭКОЛОГИЯ

УДК 551.583.7 DOI:10.7242/echo.2021.3.1

ПЕРИОДЫ ОТТАИВАНИЯ МНОГОЛЕТНЕМЕРЗЛЫХ ПОРОД В ПЛЕЙСТОЦЕНЕ В РАЙОНЕ СОЛИКАМСКОЙ ВПАДИНЫ

О.И. Кадебская Горный институт УрО РАН, г. Пермь

Аннотация: Основной целью работы являлось установление временных периодов оттаивания многолетнемерзлых пород в пределах Соликамской впадины в плейстоцене. Датировки криогенных карбонатов (маркеров начала оттаивания) проводились из пещер Дивья, Большая Махневская и Кизеловская (Виашерская), расположенных в непосредственной близости от северной и восточной границ Соликамской впадины. Было получено 29 уран-ториевых датировок, которые позволили установить начало потеплений в плейстоцене в районе Соликамской впадины (окончание Бёлинг-Алерёдского интерстадиала 13,2 тыс. лет назад, интерстадиалы 7 (ок. 34 тыс. лет), 21 (83-84 тыс. лет), 23 (ок. 104 тыс. лет) и 24 (106-107 тыс. лет), и межледниковий МІЅ 5е (128 тыс. лет), МІЅ7 (243 тыс. лет назад), МІЅ9 (ок. 303 тыс. лет) и МІЅ13 (ок. 482 тыс. лет).

Ключевые слова: палеоклиматология, изотопный состав, пещерные отложения, Северный и Средний Урал.

Введение

Мерзлота является важнейшим фактором изменения климата. Она связывает органический углерод, который при деградации мерзлоты в процессе потепления климата выводится в атмосферу в виде парниковых газов метана, CO₂ и воды.

U/Th датирование, сопряженное с изучением соотношений тяжелых и легких изотопов О и С, позволяет проводить последовательность палеоклиматических событий на протяжении последних 500 тыс лет. Синхронность климатических событий в четвертичной истории Северного Урала с другими частями Евроазиатского континента на сегодняшний день не установлена вследствие малого количества имеющихся данных. Расположение границ многолетнемерзлых пород в течение плейстоцена неоднократно менялось, что привносило большой вклад в денудацию коры выветривания и сопровождалось просадками грунта при термоэрозии и солифлюкции.

Во время потеплений происходило активное поступление воды в карстовые полости, находящиеся в мерзлотном горизонте. Криогенные кристаллы в большом количестве образовывались в подземных наледях, а оставшийся кальцит сохранялся в подземном пространстве на протяжении многих тысяч лет. Данный тип пещерных отложений в современной палеоклиматологии является одним из самых надежных маркеров наступления теплых периодов в континентальных условиях [1].

Первые работы, посвященные криогенному пещерному кальциту, сформированному во время межледниковий, были выполнены в Центральной Европе (руководитель Карел Жак, Чехия).

Было установлено, что изотопный состав С и О криогенных карбонатов отличается от современных натечных образований и криогенных микровыделений (муки) на поверхности льда, что свидетельствует о другом механизме их формирования [2]. Крупные криогенные карбонаты формируются в условиях медленного замерзания

Горное эхо № 3 (84) 2021

льда, что обусловило фиксацию в кристаллической структуре льда тяжелого изотопа кислорода ¹⁸O.

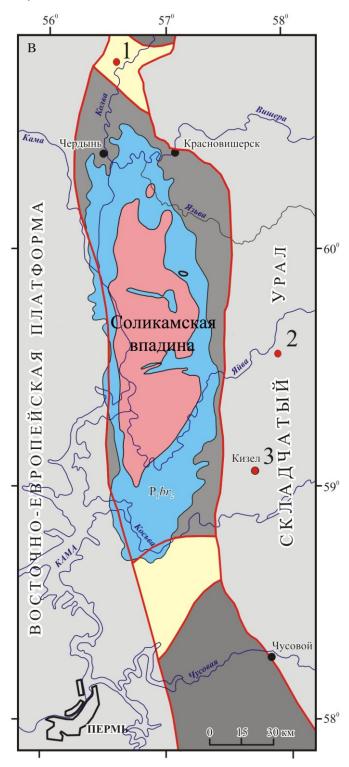
Первые экспериментальные измерения, подтверждающие этот эффект, были осуществлены в 1968 г. [3], еще ранее эффект был теоретически обоснован Вестоном [4]. Было установлено, что более легкие молекулы ¹⁶О обладают большей кинетической энергией, чем тяжелые, и более подвижны. Таким образом, при замерзании лед оказывается обогащенным тяжелыми изотопами по сравнению с водой, а вода обогащена ими по сравнению с паром. Эта идея является ключевой в современных публикациях, посвященных изотопной климатологии [1].

Для криогенного кальцита также было установлено, что при переходе от центра к периферии кристалла происходит некоторое обогащение тяжелым углеродом (13 C) и существенное обогащение легким кислородом (16 O), отражающее их существенное фракционирование в среде минералообразования [5].

В морфологическом отношении территория представляет собой всхолмленную равнину, сильно изрезанную сетью рек, ручьев и оврагов. Абсолютные отметки рельефа колеблются в пределах от 106 м (урез Камского водохранилища) до +272 м (безымянная вершина на юго-востоке впадины). Промышленность в пределах Соликамской впадины связана с Верхнекамским месторождением калийных солей.

Территорию слагают отложения верхнего отдела пермской системы, перекрытые чехлом кайнозойских образований средней мощности 5-15 м. По скважинам П.И. Преображенский разделил надсолевые отложения Соликамской впадины на три толщи (снизу): толщу гипсоносных глин и гипсов, глинисто-мергелистую и плитняковую. Толщу медистых песчаников и отложения Соликамской свиты геологи относят к уфимскому ярусу верхней перми. Выше залегают отложения светло-серых глин, которые, согласно палинологическим исследованиям, относят к элювиально-делювиальному и делювиальному комплексам среднего и верхнего плейстоцена.

В пределах впадины естественных крупных карстовых полостей, доступных для обследования, не выявлено. Из изученных пещер Пермского края, в которых был найден криогенный кальцит, ближе всего к Соликамской впадине расположены пещеры Дивья, Большая Махневская и Кизеловская (Виашерская, рис. 1).


В пределах Предуральского прогиба Соликамская впадина с севера граничит с Колвинской седловиной, в пределах которой и образовалась Дивья пещера, а с востока с зоной Западно-Уральской складчатости, где расположены Большая Махневская и Кизеловская (Виашерская) пещеры.

Протяженность Дивьей пещеры 10,1 км (является самой длинной пещерой Пермского края), глубина 28 м. Длина полости Большой Махневской пещеры по данным съемки пермского клуба спелеологов в 2019 г. составила 780 м, глубина 28 м. Кизеловская (Виашерская) пещера имеет длину 7,6 км, глубина 46 м.

Методы исследования

В лабораторных условиях были проведены структурно-морфологические и изотопно-химические исследования. Для изучения морфологии кристаллов и минерального состава пород использовался поляризационный микроскоп фирмы «Карл Цейс». Изотопные анализы выполнялись в Innsbruck Quaternary Group при Инсбрукском университете (руководитель — академик Австрийской академии наук, профессор К. Шпётль).

Анализы углерода и кислорода образцов кальцита проводились на массспектрометре Delta PLUS XL (Fisher Scientific), оснащенном автоматической линией для анализа карбонатов на основе интерфейса GASBENCH (Fisher Scientific) по методике изложенной в Spötl & Vennemann [6]. 230 Th/ 234 U датировки были выполнены методом масс-спектрометрии с термической ионизацией на масс-спектрометре MAT 262 RPQ TIMS в университете г. Шьян (Китай, руководитель X. Ченг). Все коэффициенты активности были вычислены при помощи постоянных радиоактивного распада по Cheng et al. [7] и скорректированы по детритовому Th. Абсолютные даты указаны в тыс. лет назад (от 1950 г.).

Рис. 1. Расположение изученных пещер от границ Соликамской впадины: 1 – Дивья, 2 – Большая Махневская, 3 – Кизеловская (Виашерская)

Горное эхо № 3 (84) 2021

Результаты исследований

Находка криогенного кальцита в пещере Дивья была сделана Е.П. Дорофеевым в 1968 г. и вошла в историю как первая находка подобных отложений на территории России [8]. Позднее криогенный пещерный кальцит нами был обнаружен в гротах Ажурный, Дальний, Трущоба, Планетарий, Медвежий, Кабан, Черные Глаза, Индийский, Виноградный, Ястребова, Тортов, Солнца, Заблудших-2 и в галереях БИС и Интимной в течение экспедиций с 2005 по 2020 гг. Для датирования были отобраны 20 образцов.

Во время экспедиции 2019 г. подобные конкреции были найдены в Большой Махневской пещере в гроте Западный и галерее Большой Каньон. Для датирования были отобраны 3 образца.

В Кизеловской (Виашерской) пещере криогенный кальцит нашел Е.П. Дорофеев в 1980-е гг., а в 2000 г. губахинский спелеолог С.А. Меньших. В результате нескольких экспедиций в течение 2014-2015 гг., проведенных совместно с пермским клубом спелеологов, криогенный кальцит был обнаружен в 6 гротах: Радуга, Хозяин, Восточный Перекресток, Опасный Камень, Кристальный и Жемчужный. Для датирования были отобраны 6 образцов.

Образования кальцита представлены коричневыми и бежевыми агрегатами сферолитов, реже отдельными сферолитами. Криогенные кристаллы из всех морфологических разностей представлены низкомагнезиальным кальцитом. В качестве примесей в нем присутствует P, Sr, Ba и S.

Их изотопный состав варьируется δ^{18} О от -9,6% и до -29,11%. Зафиксированные значения δ^{13} С в отобранных образцах составляют от -3,73% до -11,0%.

Для всех кристаллов кальцита из пещер Дивья и Большая Махневская фиксируется обогащение тяжелым углеродом (13 C) и существенное обогащение легким кислородом (16 O) от центра кристалла к его периферии (рис. 2) [9].

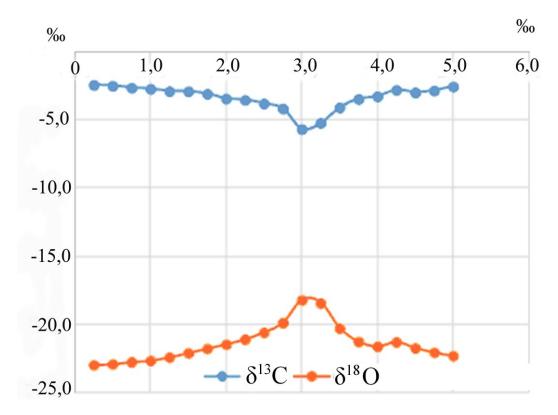


Рис. 2. Изменение изотопного состава от центра к периферии кристалла из грота Трущоба

Характерная морфология, зональность в распределении изотопов, их соотношение показывают, что изученные карбонаты из пещер Дивья, Большая Махневская и Кизеловская (Виашерская) относятся к криогенным [9].

Эпизоды оттаивания вдоль северной границы Соликамской впадины установлены по 20 датировкам криогенного кальцита из пещеры Дивья (табл. 1). Они связаны как с относительно краткосрочными потеплениями плейстоцена (окончание Бёлинг-Алерёдского интерстадиала 13,2 тыс. лет назад, интерстадиалы 7 (ок. 34 тыс. лет), 21 (83-84 тыс. лет), 23 (ок. 104 тыс. лет) и 24 (106-107 тыс. лет)), так и с длительными потеплениями – межледниковьями (микулинское межледниковье = MIS5e (128 тыс. лет), MIS9 (ок. 303 тыс. лет) и MIS13 (ок. 482 тыс. лет)).

Таблица 1 Результаты 230 Th/ 234 U датирования криогенных карбонатных образований из пещеры Дивья, Большая Махневская и Кизеловская (Виашерская)

№	Образец	²³⁸ U ppb	²³² Th	Возраст с кор-	Относи-	
		nnn		рекцией,	тельная	
		PP	ppm	рекциеи,	ошибка, %	
пещера Дивья						
	NU_6	1410±2	9060±182	482 644±8649	1,79	
	DIV 40a	1487±2	58404±1226	303 224±3407	1,12	
	DIV40b	104±0	367±8	128 024±1225	0,96	
	грот Ажурный (DIV 38)	1839±2	72023±1722	107 574±405	0,38	
	NU_7b	916±1	3590±72	107 345±285	0,27	
	DIV41a	683±1	3960±80	107 214±504	0,47	
	NU_7a	1674±2	24077±486	106 035±285	0,27	
	Грот Ажурный (NU08a)	1290±2	4084±82	106 915±390	0,36	
9 I	DIV41b	1188±1	6486±131	106 122±417	0,39	
10 I	Грот Ажурный (DIV 01)	-	-	$104\ 800\pm1500$	-	
11 I	Грот Ажурный (NU08c)	584±1	2145±43	104 383±277	0,27	
12 I	Грот Ажурный (NU08b)	2217±4	7186±145	103 877±404	0,39	
13 I	DIV43a	1352±2	68867±1432	85 679±326	0,38	
14 I	DIV43b	1515±3	247249±6218	84 280±359	0,43	
15 N	NU_3c	3204±7	22024±443	84 198±296	0,35	
16 N	 NU_3b	2920±6	572751±14794	84 098±275	0,33	
17 N	NU_5	3283±9	19365±392	83 919±392	0,47	
18 N	NU_2	1989±4	1614±33	82 989±308	0,37	
19 I	DIV43c	2111±4	8175±227	34 305±733	2,14	
20 N	NU 3a	1671±2	100108±2703	13 220±25	0,19	
Большая Махневская пещера						
1 г	грот Западный (U2)	2371,1±4,6	-	243 483±1924	0,79	
	грот Западный (U2a)	2095±2,8	-	241 986±1481	0,61	
	Большой Каньон (U1a)	3167,9±3,9	-	11 825±62	0,52	
Кизеловская (Виашерская) пещера						
1 (CU 5	4616±5	100113 ± 2093	434 676± 7276	1,67	
	 KIZ 05	1465,9± 2,1	14756± 298	197 983± 1106	0,56	
	KIZ 08	$754\pm 1,1\pm 2,1$	849± 17	107 948±572	0,53	
	KIZ06	2407,2± 4,0	2327± 47	13 161±46	0,35	
	KIZ 07	$3386,9\pm6,7$	65296± 1969	12 839±37	0,29	
	VIA 01	$3142,641\pm 8,5$	103610 ± 2580	12757±49	0,03	

Горное эхо № 3 (84) 2021

²³⁰Th/²³⁴U датирование криогенного кальцита из пещеры Большая Махневская позволило установить, что оттаивание многолетнемерзлых пород у восточной границы Соликамской впадины произошло 11,8 тыс. лет назад (начало голоцена) и 243,5 тыс. лет назад (начало межгляциала MIS7). Криогенный кальцит в Кизеловской (Виашерской) пещере образовывался 13 тыс. лет назад (начало голоцена), 198 тыс. лет назад (МIS7), 108 тыс. лет назад (интерстадиал 24) и 434,6 тыс. лет назад (МIS13).

В отличие от криогенного кальцита, формирование натечных кор происходит в условиях теплого и влажного климата. Датирование сталагмитов из грота Ажурный, Планетарий и Дальний в п. Дивья показало [9], что последняя, наиболее активная стадия роста сталагмитов была относительно короткой и пришлась на время микулинского межледниковья, около 130 тыс. лет назад. После микулинского межледниковья граница распространения мерзлоты несколько раз перемещалась на юг, поэтому многие спелеотемы в пещерах Северного и Среднего Урала поломаны при образовании льда в пещерах.

Выводы

На основании изучения изотопного состава О и С кальцита, отобранного в пещерах Дивья, Большая Махневская и Кизеловская (Виашерская), было установлено, что этот кальцит является криогенным и является маркером начала теплых периодов — межледниковий.

Th-U датирование криогенного кальцита из пещер Северного Урала позволило определить время периода оттаивания многолетней мерзлоты в пределах Соликамской впадины. Датирование натечных образований позволило определить наиболее теплые и влажные периоды в плейстоцене в пределах Северного Урала, благоприятные для интенсификации гипергенных процессов в надсолевой толще.

Исследование выполнено при финансовой поддержке Министерства науки и образования $P\Phi$ в рамках соглашения по государственному заданию № 075-03-2021-374 от 29 декабря 2020 г.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Кадебская О.И. Минеральные и геохимические индикаторы природных процессов в подземных карстовых ландшафтах Урала: дис. ... д.г.н.; 25.00.23 / Кадебская Ольга Ивановна. Пермь, 2016. 295 с.
- 2. Zak K., Onac B.P., Persoiu A. Cryogenic carbonates in cave environments: A review // Quaternary International. 2008. V. 187. P. 84-96. DOI: 10.1016/j.quaint.2007.02.022.
- 3. O'Neil J.R., Barnes I. C¹³ and O¹⁸ compositions in some fresh-water carbonates associated with ultramafic rocks and serpentinites: western United States // Geochimica et Cosmochimica Acta. − 1971. − V. 35, № 7. − P. 687-697.
- 4. Weston Jr.R.E. Hydrogen isotope fractionation between ice and water // Geochimica et Cosmochimica Acta. 1955. V. 8., № 5-6. P. 281-284.
- 5. Žak K., Onac B.P., Kadebskaya O.I., Filippi M., Dublyansky Y., Luetscher M. Cryogenic mineral formation in caves // Ice Caves. / ed. A. Persoiu, S.-E. Lauritzen. Amsterdam: Elsevier, 2018 Part 6. P. 123-162. DOI: 10.1016/B978-0-12-811739-2.00035-8.
- 6. Spotl, C., Vennemann, T.W. Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals // Rapid Communications in Mass Spectrometry. 2003. V. 17, № 9. P. 1004-1006. DOI: 10.1002/rcm.1010.
- 7. Cheng H., Edwards R.L., Hoff J., Gallup C.D., Richards D.A., Asmerom Y. The half-lives of uranium-234 and thorium-230 // Chemical Geology. − 2000. − V 169, № 1-2. − P. 17-33. DOI: 10.1016/S0009-2541(99)00157-6.

- 8. Чайковский И.И., Кадебская О.И., Жак К. Морфология, состав, возраст и природа карбонатных сферолитов из пещер Западного Урала // Геохимия. 2014. № 4. С. 373—384. DOI: 10.7868/S0016752514020046.
- 9. Dublyansky Y., Kadebskaya O., Luetscher M., Cheng H., Koltai G., Spötl C. Tracking the southern boundary of the Late Pleistocene permafrost in Ural Mountains using cryogenic cave carbonates: feasibility study // XI. International Conference On Permafrost Book of Abstracts / eds: Gunther F. and Morgenstern A. Potsdam, Germany, 2016. DOI:10.2312/GFZ.LIS.2016.001 Bibliothek Wissenschaftspark Albert Einstein.

УДК 551.4 DOI:10.7242/echo.2021.3.2

ГЕОМЕТРИЗАЦИЯ НЕДР С ЦЕЛЬЮ ДАЛЬНЕЙШЕГО ЭКСКУРСИОННОГО ИСПОЛЬЗОВАНИЯ МЕЧКИНСКОЙ ПЕЩЕРЫ

А.В. Красиков, С.Ф. Кудымов Горный институт УрО РАН, г. Пермь

Аннотация: Мечкинская пещера является уникальным объектом с точки зрения экскурсионного использования. Для обеспечения безопасного использования пещеры в экскурсионных целях в 2020-2021 г. была проведена съемка поверхности и подземная съемка пещеры с последующим составлением совмещенного плана для создания проекта горного отвода. Результатом подземной съемки стало уточнение протяженности основных ходов, морфометрических показателей всех гротов и галерей. Данные поверхностной съемки позволили определить точное положение пещеры относительно поверхности, привязать основной и второй вход пещеры, уточнить мощность перекрывающих сульфатных пород.

Ключевые слова: Мечкинская пещера, топографическая съемка, план пещеры, проект экскурсионного использования пещеры.

Введение

Большая Мечкинская пещера — пещера на левом берегу реки Мечки, расположенная в 20 км к северу от города Кунгура и в 2 км от ближайших населенных пунктов Заспалово и Родионово. Пещера заложена в сульфатных толщах кунгурского яруса нижней перми. Основной вход в пещеру расположен в срединной части правого крутопадающего склона Каменного Лога и представляет собой крутонаклонный колодец, выходящий в грот Первый. Второй вход в пещеру представляет собой узкий лаз, из которого по наклонно-вертикальным проходам можно попасть в грот Миниатюрный. Пещера состоит из пяти крупных гротов и соединяющих их галерей общей протяженностью 350 м. Самый крупный грот — Большой длиной 50 м, шириной 30 м и высотой до 7 м [1].

Для обеспечения безопасного использования пещеры в экскурсионных целях требовалась разработка совмещенного плана Мечкинской пещеры и земной поверхности над пещерой. В дальнейшем по этим данным будет выполнен проект горного отвода.

Практическая часть

Было произведено два вида съемок: поверхностная и подземная с последующим их совмещением.

Наземная съемка проводились летом 2021 г. в пределах ранее выделенного полигона, расположенного над Мечкинской пещерой. Основной целью являлось построение топографического плана территории исследований и получение отметок рельефа, кар-