Для сравнения были проанализированы все данные по станции Пермь с 1980 г. по 1990 г. (46 месяцев наблюдений) и установлено, что изотопный состав осадков демонстрирует сильную и очень сильную корреляцию с температурой воздуха (r = 0,80). Корреляция для станции Пермь немного слабее по сравнению со станцией Кунгур (17 месяцев наблюдений) и различие становится наиболее выраженным при корреляции между изотопным составом и количеством осадков. Для длинного ряда наблюдений станции Пермь корреляция очень слабая и статистически незначимая (r = 0,07), тогда как для станции Кунгур значимость имеет пограничное значение (r = r_{crit}). Такое различие может быть связано с аномальностью режима осадков в Пермском крае в 2017 г., когда их выпало около 140% от нормы.

Выводы. Полученные данные позволили впервые получить локальную линию метеорных вод для Кунгура. Средневзвешенные годовые значения изотопного состава осадков демонстрируют широтную зональность, снижаясь в направлении с юга на север. Короткий ряд наблюдений (19 месяцев) позволяет только предварительно оценить связь изотопного состава осадков с метеопараметрами (температурой и количеством осадков). Отмечается сильная корреляция между изотопным составом осадков и температурой воздуха. Около 80% вариации изотопного состава осадков в рамках годового хода определяется температурой воздуха. Количество осадков показывает умеренную корреляцию с изотопным составом осадков для короткой серии наблюдений на станции Кунгур. При этом корреляция отсутствует для длинной серии наблюдений на станции Пермь. Различие объясняется аномальным режимом осадков в Пермском крае в 2017 г.

Работа выполнена при финансовой поддержке РФФИ в рамках научных проектов № 17-45-590369 «Исследование формирования изотопного и химического состава природных вод на территории Пермского края» (2017 г.).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Craig H. Isotopic variations in meteoric waters // Science. 1961. V. 133. P. 1702-1703.
- 2. Dansgaard W. Stable isotopes in precipitation // Tellus. 1964. V. 16. P. 436-468.
- Evans J.D. Straightforward Statistics for the Behavioral Sciences. Pacific Grove: Brooks/Cole Publishing, 1996. – 600 p.

УДК 552.08

DOI: 10.7242/echo.2019.1.3

ПРОЧНОСТНЫЕ И ДЕФОРМАЦИОННЫЕ ПОКАЗАТЕЛИ ГОРНЫХ ПОРОД, СЛАГАЮЩИХ МАССИВ ЛЕДЯНОЙ ГОРЫ

А.В. КРАСИКОВ

Горный институт УрО РАН, г. Пермь

Аннотация: Исследование механических характеристик горных пород является актуальной задачей при прогнозе развития негативных процессов и обеспечения безопасности проведения горных работ на закарстованных территориях, какой и является массив Ледяной горы. Сложность данного прогноза может заключаться в том, что неоднородные по составу сульфатные и карбонатные породы будут менять механические свойства как по площади распространения, так и по мощности пластов. Кроме этого следует учитывать и воздействие на породы различных геологических процессов. В данной статье изложены результаты экспериментальных исследований прочностных и деформационных характеристик горных пород методом прямого опробования. Он заключается в испытании образцов, изготовленных из керна скважины и монолитов, отобранных из гротов Кунгурской ледяной пещеры. Для сульфатно-карбонатных пород массива впервые были определены основные механико-физические показатели, такие как предел прочности, модули деформации и упругости, коэффициент сцепления, угол внутреннего трения и др. Анализ полученных результатов позволил

нам предположить, что разные значения пределов прочности в пещерных и скважинных образцах связаны с неоднородностью состава и строения пород, различной степенью трещиноватости и раздробленности пород, величиной влияния давления, приложенного со стороны вмещающих горных пород. Также стоит отметить воздействие процессов физического выветривания, таких как влажность, температурные вариации и воздействие воды. В дальнейшем для общего анализа разреза требуется выделить интервалы локального дробления, трещиноватости, гидратации, складчатости, что даст возможность построить механическую основу для геодинамической модели Ледяной горы.

Ключевые слова: Кунгурская Ледяная пещера; прочностные и деформационные характеристики; сульфатные и-карбонатные породы; закарстованный массив; сжатие.

Введение. Массив Ледяная гора представляет собой платообразную закарстованную возвышенность между реками Сылвой и Шаквой, образованную толщей переслаивающихся карбонатно-сульфатных пород кунгурского яруса, представленного филипповским и иренским горизонтами. Последний, в свою очередь, состоит из трех сульфатных и двух карбонатных пачек. Для исследования механических свойств пород, слагающих массив, был выполнен отбор образцов. Всего было отобрано 25 монолитов, 17 – из керна скважины № 4443 (абс. отметка 199,75 м), 8 – отобранных из стенок и сводов гротов самой пещеры. По результатам отбора были выполнены испытания, в ходе которых рассчитали комплекс прочностных и деформационных показателей, включающих в себя предел прочности на одноосное сжатие, коэффициент сцепления и угол внутреннего трения и др.

Методика и результаты работ. Для выполнения испытаний на одноосное сжатие было изготовлено 2-5 проб каждого образца цилиндрической и призматической формы размером 35×35×70 мм. Испытания образцов на сжатие проводились на жестком электромеханическом прессе Zwick – Z 250 с предельной нагрузкой 25 тонн. Схема определения механических характеристик пород при одноосном сжатии представлена на рис. 1.

Рис. 1. Схема определения прочностных и деформационных характеристик горных пород по полной диаграмме деформирования при одноосном сжатии: σ_{cxc} – предел прочности на одноосное сжатие, Мпа; σ_{ynp} – предел упругости, Мпа; D – модуль деформации (касательный) на пределе упругости, ГПа D_{np} – модуль деформации (секущий) на пределе прочности, ГПа; ε_y – относительная продольная деформация, соответствующая пределу упругости, %; ε_{np} – относительная продольная деформация, соответствующая пределу прочности (разрушающая деформация), %; E – модуль упругости, определенный по разгрузочной ветви диаграммы деформирования, *ГПа М* – модуль спада, определенный по запредельной ветви диаграммы деформирования, ГПа.

Расчет предела прочности при одноосном сжатии заключался в измерении максимальной разрушающей нагрузки при нагружении образца и рассчитывается по формуле:

$$\sigma_{np} = \frac{P_{np}}{S} \cdot 10, \text{ M}\Pi \text{a}; \qquad \sigma_{c\mathcal{H}} = \sigma_{np} \cdot K, \text{ M}\Pi \text{a}$$
(1)

где $P_{\rm np}$ – разрушающая нагрузка, кН; S – площадь поперечного сечения образца, см²; K – поправочный коэффициент, учитывающий форму образца (ГОСТ 21153.2-84, 2001).

Относительная продольная деформация рассчитывалась по величине абсолютной деформации образца, соответствующей перемещению плит пресса (ГОСТ 28985-91, 2004):

$$\mathcal{E} = \frac{\Delta h}{h} \cdot 100 \%, \tag{2}$$

где Δh – абсолютная продольная деформация, мм; h – высота образца, мм.

Модуль деформации (секущий) определялся по отношению напряжений на пределе прочности к соответствующим им деформациям (ГОСТ 28985-91, 2004):

$$D_{np} = \frac{\sigma_{np}}{\varepsilon_{np}}, \quad \Gamma \Pi a, \tag{3}$$

Модуль деформации (касательный) определялся по линейной части нагрузочной ветви диаграммы нагружения образца (ГОСТ 28985-91, 2004):

$$D_{y} = \frac{\sigma_{j} - \sigma_{i}}{\varepsilon_{j} - \varepsilon_{i}}, \quad \text{IIIa}, \quad (4)$$

где σ_i , σ_j – напряжения, соответствующие начальной и конечной точкам линейного участка кривой деформирования; ε_i , ε_j – относительные продольные деформации, соответствующие напряжениям σ_i , σ_i .

Модуль упругости (разгрузочный) определялся по линейной части разгрузочной ветви диаграммы деформирования (ГОСТ 28985-91, 2004):

$$E = \frac{\sigma_n - \sigma_k}{\varepsilon_n - \varepsilon_k}, \quad \Gamma \Pi a, \tag{5}$$

где σ_k , σ_n – напряжения, соответствующие начальной и конечной точкам линейного участка разгрузочной ветви кривой деформирования; ε_k , ε_n – относительные продольные деформации, соответствующие напряжениям σ_k , σ_n .

Определение предела прочности горных пород при одноосном растяжении выполнялось методом раскалывании плоскопараллельных пластин соосными клиньями в соответствии с ГОСТ (ГОСТ 21153.3–85, 1986):

$$\sigma_p = K \frac{P_p}{S} 10, \quad \text{MIIa}, \tag{6}$$

где P_p – разрушающая нагрузка, кH; S – площадь разрушения, см²; K – поправочный коэффициент.

По результатам испытаний на растяжение и одноосное сжатие был построен паспорт прочности слагающих пород. При описании предельной огибающей кругов Мора были определены коэффициент сцепления (C) и тангенс угла внутреннего трения (tg f) [1]. Все полученные физико-механические показатели горных пород представлены в таблице 1. Также на основе этих данных были построены графики (рис. 2).

Рис. 2. Графики прочностных и деформационных характеристик для образцов из скважины (а); образцов из пещеры (б)

Выводы. Для образцов из керна скважины отмечаются разные значения пределов прочности и деформации, а также модуля упругости, по сравнению с образцами, отобранными из полостей массива Ледяной горы. Прочностные и деформационные показатели образцов из керна ангидрит-гипсовой породы шалашнинской пачки (интервал отбора от 38,3 до 50,3 м) и гипсов неволинской пачки (интервал отбора от 50,3 м до 61,0 м) постепенно снижаются с глубиной от 47,2 м до 57,4 м.

Доломиты подошвы неволинской пачки в интервале 57,4-60,0 м имеют наименьшие значения прочности ($\sigma c - 37,7$ МПа; $\sigma p - 9,74$ МПа), что связано с их периодичной обводненностью. Гипс, находящийся на контакте с доломитами неволинской пачки, в интервале 64,0-65,0 м., подвержен интенсивному растворению, поэтому также имеет низкие прочностные характеристики ($\sigma c - 34,62$ МПа; $\sigma p - 4,94$ МПа). Ниже по разрезу в породах ледянопещерской пачки (интервал отбора от 61,0 м до 87,5 м) наибольшие значения прочности гипса ($\sigma c - 94,28$ МПа; $\sigma p - 5,17$ МПа) в интервале 66,5-67,5 м возможно связаны с его перекристаллизацией. Гипсоангидритовая порода с глубины 67,5 до 86,5 м постепенно теряет прочностные и деформационные показатели, что скорее всего обусловлено увеличением трещинноватости и раздробленности массива вблизи карстовой полости КЛП. Показатели уменьшаются в пределах: $\sigma c - \sigma - 69,5$ МПа до 40,15 МПа; $\sigma p - \sigma - 8,15$ МПа до 4,75 МПа. Для образцов из керна наименьшая прочность характерна для доломитов филигповского горизонта ($\sigma c - 20,85$ МПа; $\sigma p - 2,82$ МПа), что связано с его постоянной обводненностью.

2
Ë
Ξ
13
a
L

Горное эхо

Прочностные и деформационные показатели горных пород

Место отбора пробы	N <u>ė</u> M	Краткая х-ка образцов	Глубина отбора	беже	$\sigma_p,$	Ģ,	enp	ε _j ,	D_{np}	D _y ,	E,	M_{c}
moodu	moodu		ndooro	МПа	МПа	МПа	0∕∕0	%	ГПа	ΓПа	ГПа	ГПа
	1	Доломит	15,0-18,0 M	18,00	4,28	13,63	1,06	0,78	1,69	3,05	4,89	2,57
	2	Ангидрит- гипсовая порода	47,2-47,7 m	54,07	4,87	44,31	0,75	0,64	7,25	9,73	11,93	12,51
	3	Линзовидно – желваковый гипс	48,1-48,6 m	52,40	5,01	39,60	0,82	0,66	7,10	9,30	11,62	10,63
	4	Гипс мелко, среднезернистый, массивный	53,5-54,5 м	49,83	5,00	26,57	0,71	0,47	7,03	9,44	13,27	
	5	Гипс с реликтами ангидрита	54,5-55,5 M	34,62	4,94	18,46	1,46	0,92	3,77	5,70	8,03	6,90
	9	Доломит пелитоморфный, массивный	57,4-60 m	37,70	9,74	31,19	2,35	1,78	2,08	3,91	5,49	4,95
	7	Гипс	64,0- 65,0 м	23,88	2,80	12,77	3,06	1,99	0,94	1,96	4,48	4,19
	8	Гипс	64,0- 65,0 м	94,28	5,17	46,70	1,07	0,67	8,80	11,90	11,99	
в п и де воло	8-1	Желваковый ангидрит	72,0 -72,5 м	45,13	6,63	19,43	0,73	0,47	5,90	8,12	11,44	12,45
CNDAMBIHA	8-2	Желваковый ангидрит с участками крупнокристаллического гипса	72,0 -72,5 м	58,25	6,48	22,77	0,83	0,43	7,03	9,10	12,15	
	8-3	Ангидрит-гипсовая порода	75,0 - 76,0 м	69,75	5,30	33,98	0,89	0,53	7,84	9,58	11,83	
	8-4	Ангидрит-гипсовая порода	79,0-79,5 м	69,75	8,15	35,46	0,99	0,66	7,38	9,52	10,88	7,36
	8-5	Ангидрит-гипсовая порода	81,5 -84,5 м	56,44	5,38	38,71	1,05	0,77	5,84	8,03	10,03	12,60
	8-6-1	Ангидрит- гипсовая порода	84,5 – 85,5 м	55,49	4,75	39,98	1,27	0,99	4,79	8,22	8,88	12,49
	8-6-2	Ангидрит гипсовая порода	85,8-86,0 м	42,00	6,27	28,46	1,66	0,93	3,36	6,40	7,66	8,16
	8-6-3	Ангидрит гипсовая порода	86,5–87.0 м	40,15	7,31	18,74	1,14	0,66	3,80	5,04	7,93	12,35
	6	Доломит тонкослоистый, пелитоморфный	92,5 -93,0 м	20,85	2,82	11,80	0,84	0,39	2,49	5,40	9,69	11,02
	1	Гипс	52,0-53,0	16,79	1,89	10,57	0,86	0,47	2,19	3,6	5,4	6,73
	2	Карбонатная брекчия, необводненная	60,0-63,0	16,78	3,22	10,37	1,22	0,59	1,53	3,35	4,81	7,16
	3	Карбонатная брекчия, обводненная	65,0-67,0 м	7,34	1,16	4,56	0,89	0,37	1,01	1,72	2,80	5,34
	4	Гипс	60, 0 - 61, 0	16,60	4,78	9,02	0,96	0,52	1,80	3,25	4,37	8,51
пещера	5	Желваковый гипс	62,0-64,0	29,84	5,08	11,94	1,00	0,53	3,11	4,42	7,62	6,96
	9	Ангидрит-гипсовая порода	64,0-65,0 м	40,81	3,95	20,33	0,91	0,58	4,45	6,59	10,63	10,76
	7	Сульфатная брекчия	65,0-66,0	38,82	5,49	26,12	0,82	0,61	4,61	7,85	9,10	10,95
	8	Сульфатная брекчия	68,0 - 70,0	36,78	4,08	18,41	0,85	0,42	4,47	6,61	9,13	12,28

Доломиты подошвы неволинской пачки в интервале 57,4-60,0 м имеют наименьшие значения прочности ($\sigma c \mathscr{K} - 37,7$ МПа; $\sigma p - 9,74$ МПа), что связано с их периодичной обводненностью. Гипс, находящийся на контакте с доломитами неволинской пачки, в интервале 64,0-65,0 м., подвержен интенсивному растворению, поэтому также имеет низкие прочностные характеристики ($\sigma c \mathscr{K} - 34,62$ МПа; $\sigma p - 4,94$ МПа). Ниже по разрезу в породах ледянопещерской пачки (интервал отбора от 61,0 м до 87,5 м) наибольшие значения прочности гипса ($\sigma c \mathscr{K} - 94,28$ МПа; $\sigma p - 5,17$ МПа) в интервале 66,5-67,5 м возможно связаны с его перекристаллизацией. Гипсоангидритовая порода с глубины 67,5 до 86,5 м постепенно теряет прочностные и деформационные показатели, что скорее всего обусловлено увеличением трещинноватости и раздробленности массива вблизи карстовой полости КЛП. Показатели уменьшаются в пределах: $\sigma c \mathscr{K} - 069,5$ МПа; $\sigma p - 2,82$ МПа; $\sigma p - 2,82$ МПа), что связано с его постоянной обводненностью.

Для образцов, отобранных из стен и сводов пещеры, наименьшая прочность характерна для обводненной карбонатной брекчии ($\sigma c \omega - 7,34$ МПа; $\sigma p - 1,16$ МПа). Наибольшая прочность наблюдается в образцах гипсоангидрита ледянопещерской пачки ($\sigma c \omega - 40,81$ МПа; $\sigma p - 3,95$ МПа). Для образцов гипса неволинской пачки характерны средние показатели прочности ($\sigma c \omega - 16,79$ МПа; $\sigma p - 1,89$ МПа).

Прочностные характеристики пещерных образцов ниже, чем у образцов пород отобранных из скважины. Так например гипсы неволинской пачки в массиве имеют показатели прочности ($\sigma c c c - 34,62$ МПа; $\sigma \sigma p - 4,94$ МПа), а в пещере их прочность снижена до следующих показателей: $\sigma c c c - 16,79$ МПа; $\sigma p - 1,89$ МПа. Для гипсоангидритовой породы ледянопещерской пачки в массиве показатели составляют ($\sigma c c c - 69,75$ МПа; $\sigma p - 8,15$ МПа), а в пещере эти показатели снижаются до $\sigma c c c - 40,81$ Мпа, $\sigma p - 3,95$ МПа, соответственно. Это позволяет предполагать, что образцы, отобранные из скважины, находились под воздействием сил всестороннего сжатия и были слабо подвержены процессам выветривания, а образцы из пещеры, наоборот, испытывали сильное воздействие со стороны процессов выветривания (влажность, температурные вариации, воздействие воды и др.), происходящих в карстовых полостях. Высокие значения прочности гипса (образец № 8) из керна ($\sigma c c c - 94,28$ МПа; $\sigma p - 5,17$ МПа) не соотносятся с данными графика на рис. 2-6, что, возможно, связано с недостаточным количеством отобранных образцов пещерных образцов из данного интервала.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Баклашов И.В. Геомеханика: учебник для вузов. Т. 1. Основы геомеханики. М.: МГГУ, 2004. 208 с.
- Кадебская О.И., Калинина Т. А. Литологический разрез Ледяной горы // Комплексное использование и охрана подземных пространств: сб. докл. Междунар. науч.-практ. конф., посвящ. 100-летнему юбилею науч. и туристско-экскурсионной деятельности в Кунгурской Ледяной пещере и 100-летию со дня рожд. В.С. Лукина / ГИ УрО РАН; под общ. ред. О. Кадебской, В. Андрейчука. – Пермь, 2014. – С. 42-49.