УДК 550.834

ВЫЯВЛЕНИЕ СКЛАДЧАТЫХ ДИСЛОКАЦИЙ ШАХТНЫМИ СЕЙСМОРАЗВЕДОЧНЫМИ ИССЛЕДОВАНИЯМИ НА ПРИМЕРЕ ВЕРХНЕКАМСКОГО МЕСТОРОЖДЕНИЯ СОЛЕЙ

А.А. Жикин

Горный институт УрО РАН, г. Пермь

Аннотация: Представлены примеры решения задачи определения зон влияния складчатых дислокаций на участках сложного геологического строения, вскрытых горными выработками на Верхнекамском месторождении калийно-магниевых солей (ВКМКС), с применением технологий шахтных сейсмоакустических исследований. Представлены результаты обработки и интерпретации сейсморазведочных данных, полученных на участках складкопроявления различной интенсивности. Обозначены наиболее информативные параметры волновых полей, характерные для локализации проявлений пликативных нарушений массива.

Ключевые слова: Верхнекамское месторождение солей, шахтная сейсморазведка, складчатые дислокации.

Ведение очистных работ на участках месторождений со сложным геологическим строением требует оперативного контроля за состоянием породного массива во избежание аварийных ситуаций, связанных с нарушением устойчивости горных выработок, вскрытия зон, опасных по газодинамическим явлениями, а также с целью минимизации рисков проникновения грунтовых вод в шахту, что особенно критично для месторождений водорастворимых полезных ископаемых.

На Верхнекамском месторождении калийных и магниевых солей (ВКМКС) для решения задач по контролю за состоянием подработанного массива выполняются шахтные сейсмоакустические исследования по методу отражённых волн в модификации общей глубинной точки (ОГТ) [5, 6, 7, 8]. Работы нацелены на поиск и картирование участков массива с потенциальным снижением упругих свойств, где особое внимание уделяется местам проявления разрывных и складчатых дислокаций.

Внутрисоляные деформации соляных комплексов представлены преимущественно складчатыми дислокациями, отличающиеся как по размерам, так и по глубине распространения. Во вскрытых горными выработками интервалах соляной толщи выделяются четыре порядка складок [1], основные пространственные характеристики которых представлены в таблице 1.

Таблица 1

Складки	Высота	Ширина	Длина
1-й порядок	от 3-5 см до 60-90 см (отдельных лежачих складок до 1,5-2 м)	до 1 м	до 5-7 м
2-й порядок	0,5-2 м (отдельных лежачих складок до 4-6 м)	от 3-7 м до 10-15 м	10-40 м
3-й порядок	3-12 м	от 20-30 м до 100 м	до 300 м (отдельных скла- док до 370 м)
4-й порядок	20-30 м	120-250 м	700-1300 м

Классификация складчатых дислокаций по Голубеву Б.М.

Как правило, в продуктивных калийных пластах наблюдаются складчатые дислокации 1 и 2 порядка, 3 и 4 порядок больше характерен для интервала карналлитового комплекса пластов от Б до Е (мощностью около 50 м), а также сильвинитового комплекса в пределах соляных поднятий. По характеру деформаций породы карналлитового комплекса резко дисгармоничны. Входящие в его состав пласты солей не только интенсивно дислоцированы, но и подвергнуты дроблению [3]. Ведение очистных работ в зонах влияния подобных структур чревата нарушением сплошности водозащитной толщи. Поэтому поиск и картирование подобных зон геофизическими методами является приоритетной задачей как опережающих исследований, так и наблюдений при непосредственном ведении горных работ. Основные задачи сейсморазведочных исследований на участках выявленных пликативных структур заключаются в оценке упругих характеристик массива и определении параметров пространственного расположения зоны влияния сладок [4].

Размер выделяемых структур при шахтных сейсморазведочных исследованиях ограничен разрешающей способностью (PC) метода. Вертикальная PC определяет минимальные размеры по глубине, зависит от длинны волны и в среднем составляет 1/4 от её размера, а горизонтальная определяется диаметром первой зоны Френеля и зависит как от длины волны, так и от глубины исследования (с глубиной горизонтальная PC ухудшается) (таблица 2).

Таблица 2

Продольные волны							
Глубина ис- следования, м	Скорость рас- пространения волн, м/с	Частота полезного сигнала, Гц	Длина волны, м	Вертикальная разрешающая способность, м	Горизонтальная разрешающая способность, м		
10	3600 – 4200	450 – 650	5,5 – 9,3	1,38 – 2,33	2,71 - 3,60		
20					3,77 - 4,95		
30					4,59 - 6,01		
40					5,28 - 6,91		
50					5,90 - 7,71		
60					6,45 - 8,43		
70					6,97 – 9,09		
80					$7,\!44-9,\!71$		
90					7,89 – 10,29		
100					8,32 - 10,84		
Поперечные волны							
10		450 – 650	4,4 – 6,4	0,96 – 1,61	2,40 - 2,93		
20					3,36 - 4,07		
30	2500 - 2900				4,09 - 4,96		
40					4,72 - 5,71		
50					5,27 - 6,37		
60					5,77 - 6,97		
70					6,22 - 7,52		
80					6,65 - 8,03		
90					7,05 - 8,52		
100					$7,\!43-8,\!97$		

Разрешающая способность шахтных сейсмоакустических исследований для условий ВКМКС

На рисунке 1 показаны фрагменты модельных глубинных сейсмических разрезов, наглядно показывающие более разрешенную запись как по вертикали, так и по горизонтали для поперечных волн, но ввиду особенностей возбуждения и приёма сигнала, а именно направленности источника, получить разрез на поперечных волнах, лишённый интенсивных кратных волн как от нижележащих, так и от вышележащих слоёв соляного комплекса – задача не тривиальная [2].

Рис. 1. Модельные глубинные сейсмические разрезы для условий регистрации во внутренних точках среды: а – для продольных волн, б – для поперечных волн

При производстве шахтных наблюдений используется метод отраженных волн по методике многократных перекрытий в модификации общей глубинной точки (ОГТ) с использованием параметров регистрации, указанной в таблице 3. В ряде случаев шаг возбуждения и приёма по профилю сгущается в зависимости от детальности исследования.

Таблица 3

Параметр сейсмической записи	Значение		
Количество активных каналов	64		
Длина записи	1024 дискрет		
Шаг дискретизации	0,1 мс (100 мкс)		
Усиление сигнала	64 дБ		
Шаг пунктов приёма	2 м		
Шаг пунктов возбуждения	2 м		
Источник упругих волн	кувалда		
Количество накоплений в кров- лю выработки	16		

Параметры регистрации шахтных сейсмоакустических исследований

Рассмотрим ряд примеров применения технологии шахтной сейсмоакустики применительно к участкам проявления складчатых дислокаций на ВКМКС.

На рисунке 2 представлен временной разрез, полученный при профилировании на продольных волнах по пласту АБ. Залегание пласта спокойное, отмечается лишь незначительное присутствие мелкой внутрипластовой складчатости. В данном случае основные отражающие горизонты (ОГ) вышележащей соляной толщи прослеживаются уверенно. Каких-либо резких изменений в кинематических и динамических параметрах волнового поля не отмечается.

Рис. 2. Результат цифровой обработки шахтных сейсмоакустических исследований в районе проявления внутрипластовой складчатости 1-го порядка по пласту АБ (по Б.М. Голубеву) – временной разрез ОГТ

Рис. 3. Результат цифровой обработки шахтных сейсмоакустических исследований в районе проявления складчатости 2-го порядка по пласту Кр2 (по Б.М. Голубеву) – временной разрез ОГТ

Наличие складок с выстой 1-3 м на всём протяжении профиля наблюдений существенно меняет внешний вид волновой картины (Рис. 3). На некоторых участках образуются обрывы осей синфазности или переходы с фазы на фазу, что вызвано умеренно неспокойным поведением гипсометрии пласта. Но в то же время резких нарушений в характере прослеживаемости отражающих горизонтов не отмечено, вышележащие ОГ, приуроченные к соляным пластам карналлитового комплекса, повторяют структуру горизонта на уровне исследования.

Складки третьего порядка уже вносят существенные искажения как в структуру волновой картины, так и в характеристики регистрируемых волновых полей. На рисунке 4 представлены результаты исследований в районе развития складчатости с амплитудой 3-5 метров на уровне сильвинитового пласта Кр2. Границы распространения зоны влияния внутрисоляных дислокаций уверенно картируются по резким срывам в прослеживаемости осей синфазности основных ОГ. Понижение значений эффективных скоростей в зонах влияния складчатых структур говорит о потенциальном снижении упругих параметров массива. Более наглядно выделяется зона влияния нарушения на временном разрезе, полученном в результате спектральной декомпозиции в интервале частот 300-700 Гц.

Рис. 4. Результаты цифровой обработки шахтных сейсмоакустических исследований в районе проявления складчатости 3-го порядка по пласту Кр2 (по Б.М. Голубеву): а - временной разрез ОГТ, б – скоростная характеристика временного разреза, в – динамический временной разрез в интервале частот 300-700 Гц

Наиболее показательными примерами проявления внутрисоляных складчатых дислокаций являются структуры 4 порядка. Подобная интенсивная складчатость с амплитудами 15-20 м и более представляют высокую степень потенциальной опасности по причинам возможного наличия вертикальных трещин различного заполнения. Подобные структуры, вскрытые горными выработками, требуют особого внимания геологических служб рудника и организации мер по их детальному изучению с целью минимизации рисков возникновения аварийных ситуаций на участке их проявления.

Специалистами горнодобывающего предприятия на участке примыкания двух смежных горных выработок (под углом 90°) очистными работами вскрыта складка амплитудой около 30 метров. В районе складкопроявления в оперативном режиме выполнены шахтные сейсмоакустические исследования, по результатам обработки и интерпретации которых локализована зона влияния внутрисоляной дислокации (Рис. 5).

Рис. 5. Результат цифровой обработки шахтных сейсмоакустических исследований в районе проявления складчатости 4-го порядка по пласту Кр2 (по Б.М. Голубеву) – временной разрез ОГТ

Волновая картина в данной зоне имеет хаотичную структуру, отмечаются резкие срывы осей синфазности ОГ, приуроченных к различным пластам солей (Рис. 5). По падению значений скоростной характеристики отмечается снижение упругих характеристик массива пород (Рис. 6). Более наглядно границы данной зоны проявляются в динамическом представлении спектральной декомпозиции временного разреза в интервале частот 400-900 Гц (Рис. 7).

Для совокупной оценки влияния изменений наиболее значимых динамических и кинематических параметров сейсмической записи реализуется распределение комплексного параметра (КП), представляющего суммарное влияние изменений амплитуд, частот, когерентности и скоростей сейсмических волн с учётом кратности наблюдений. Значимые изменения установленных параметров волнового поля, входящих в набор КП, характерные для складчатых областей, а именно снижение эффективных скоростей, падение значений амплитуд, частот и когерентности сигнала, кодируются в цветовое представление распределения КП по временному разрезу. Наиболее негативные области снижения упругих характеристик массива представлены яркими зонами значений КП (Рис. 8).

Рис. 6. Результат цифровой обработки шахтных сейсмоакустических исследований в районе проявления складчатости 4-го порядка по пласту Кр2 (по Б.М. Голубеву) – скоростная характеристика временного разреза ОГТ

Подобные высокоамплитудные складки имеют тенденцию к увеличению высоты и уменьшению ширины складки в породах карналлитового комплекса, что в некоторых случаях сопряжено с образованием зон дробления и требует более детально изучения. В данном случае характерных признаков, указывающих на присутствие дизентегрированных пород в массиве соляной толщи, не выявлено.

Рис. 7. Результат цифровой обработки шахтных сейсмоакустических исследований в районе проявления складчатости 4-го порядка по пласту Кр2 (по Б.М. Голубеву) – динамический временной разрез в интервале частот 400-900 Гц

Рис. 8. Результат цифровой обработки шахтных сейсмоакустических исследований в районе проявления складчатости 4-го порядка по пласту Кр2 (по Б.М. Голубеву) – распределение комплексного параметра

Применение технологий шахтных сейсмоакустических исследований на продольных волнах зарекомендовали себя как весьма оперативный и эффективный способ локализации зон влияния складчатых дислокаций, вскрытых горными выработками. Сейсмические наблюдения позволяют в кратчайшие сроки оконтурить пределы влияния потенциально негативных изменений упругих свойств породного массива и обеспечить специалистов-геомехаников актуальными параметрами о горно-геологическом состоянии конкретных участков рудников. Шахтная сейсморазведка рекомендуется к реализации и регламентируется для выполнения на различных этапах ведения горных работ на ВКМКС.

Исследование выполнено при финансовой поддержке Министерства науки и образования РФ (рег. номер проекта 122012000401-7).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Голубев Б.М. Морфологические особенности складок внутри калийной толщи Верхнекамского месторождения и условия их формирования // Докл. АН СССР. 1972. Т. 204, № 3. С. 671-673.
- Жикин А.А., Санфиров И.А., Трапезникова А.Б. Полноволновое сейсмическое моделирование зоны гипергенных изменений продуктивных отложений соляной толщи // Инженерная и рудная геофизика – 2022: сб. материалов 18-ой науч.-практ. конф. и выставки, 5-8 сент. 2022 г. – М., 2022. – С. 440-446.
- 3. Кудряшов А.И. Верхнекамское месторождение солей. 2-изд., перераб. М.: Эпсилон Плюс, 2013. 368 с.
- Санфиров И.А. Рудничные задачи сейсморазведки МОГТ / ГИ УрО РАН. Екатеринбург, 1996. 168 с.
- Санфиров И., Бабкин А., Ярославцев А., Герасимова И., Фатькин К., Глебов С. Картирование локальных нарушений водозащитной толщи комплексом многоуровенных сейсморазведочных исследований различной размерности // Инженерная и рудная геофизика – 2019: 15-я юбилейная конф. и выставка, 22-26 апр. 2019. – Геленджик, 2019. – С. 485-495. – DOI: 10.3997/2214-4609.201901743.
- 6. Санфиров И.А., Бабкин А.И., Ярославцев А.Г. Комплексные методические решения в шахтной сейсмоакустике // Геофизика. – 2014. – № 5. – С. 10-15.
- 7. Санфиров И.А., Бабкин А.И. Методические особенности шахтных сейсмоакустических исследований на Верхнекамском калийном месторождении солей // Горный информационно-аналитический бюллетень. 2007. № 11. С. 145-154.
- Ярославцев А.Г., Фатькин К.Б. Шахтные сейсмоакустические исследования при контроле предохранительных целиков в калийных рудниках // Инженерная и рудная геофизика 2020: 16-я науч.практ. конф., 14-18 сент. 2020. Пермь, 2020. DOI: 10.3997/2214-4609.202051043.